12,099 research outputs found

    An Intrinsic Approach to Forces in Magnetoelectric Media

    Get PDF
    This paper offers a conceptually straightforward method for the calculation of stresses in polarisable media based on the notion of a drive form and its property of being closed in spacetimes with symmetry. After an outline of the notation required to exploit the powerful exterior calculus of differential forms, a discussion of the relation between Killing isometries and conservation laws for smooth and distributional drive forms is given. Instantaneous forces on isolated spacetime domains and regions with interfaces are defined, based on manifestly covariant equations of motion. The remaining sections apply these notions to media that sustain electromagnetic stresses, with emphasis on homogeneous magnetoelectric material. An explicit calculation of the average pressure exerted by a monochromatic wave normally incident on a homogeneous, magnetoelectric slab in vacuo is presented and the concluding section summarizes how this pressure depends on the parameters in the magnetoelectric tensors for the medium.Comment: 25 pages, 3 figures, to appear in Il Nuovo Cimento B, proceedings of GCM8, Catania (Oct 2008) - References added, minor corrections mad

    Intergenerational equity and conservation

    Get PDF
    The issue of integenerational equity in the use of natural resources is discussed in the context of coal mining conversion. An attempt to determine if there is a clear-cut benefit to future generations in setting minimum coal extraction efficiency standards in mining is made. It is demonstrated that preserving fossil fuels beyond the economically efficient level is not necessarily beneficial to future generations even in terms of their own preferences. Setting fossil fuel conservation targets for intermediate products (i.e. energy) may increase the quantities of fossil fuels available to future generations and hence lower the costs, but there may be serious disadvantages to future generations as well. The use of relatively inexpensive fossil fuels in this generation may result in more infrastructure development and more knowledge production available to future generations. The value of fossil fuels versus these other endowments in the future depends on many factors which cannot possibly be evaluated at present. Since there is no idea of whether future generations are being helped or harmed, it is recommended that integenerational equity not be used as a factor in setting coal mine extraction efficiency standards, or in establishing requirements

    Fiber optic wavelength division multiplexing: Principles and applications in telecommunications and spectroscopy

    Get PDF
    Design and fabrication tradeoffs of wavelength division multiplexers are discussed and performance parameters are given. The same multiplexer construction based on prism gratings has been used in spectroscopic applications, in the wavelength region from 450 to 1600 nm. For shorter wavelengths down to 200 nm, a similar instrument based on longer fibers (500 to 1000 micrometer) has been constructed and tested with both a fiber array and a photodiode detector array at the output

    Using visualization for visualization : an ecological interface design approach to inputting data

    Get PDF
    Visualization is experiencing growing use by a diverse community, with continuing improvements in the availability and usability of systems. In spite of these developments the problem of how first to get the data in has received scant attention: the established approach of pre-defined readers and programming aids has changed little in the last two decades. This paper proposes a novel way of inputting data for scientific visualization that employs rapid interaction and visual feedback in order to understand how the data is stored. The approach draws on ideas from the discipline of ecological interface design to extract and control important parameters describing the data, at the same time harnessing our innate human ability to recognize patterns. Crucially, the emphasis is on file format discovery rather than file format description, so the method can therefore still work when nothing is known initially of how the file was originally written, as is often the case with legacy binary data. © 2013 Elsevier Ltd

    The use of checks and other noncash payment instruments in the United States

    Get PDF
    Statistical estimates indicate that the use of checks in the United States has been declining since the mid-1990s, even as the population and the level of economic activity have been increasing. In contrast, the use of electronic payments has been growing at high and accelerating rates. Nonetheless, the paper check remains the predominant means of making retail payments and will likely continue to play a significant role in the U.S. payment system for the foreseeable future. The number and value of checks paid varies across depository institutions according to type, size, and location, in part a result of differences in the use of checks and electronic payments by households, businesses, and governments. Overall, household's share of total checks written has increased relative to that of businesses and governments.Payment systems ; Electronic funds transfers

    DHCR7 mutations linked to higher vitamin D status allowed early human migration to Northern latitudes

    Get PDF
    PMCID: PMC3708787This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Measuring Visual Complexity of Cluster-Based Visualizations

    Full text link
    Handling visual complexity is a challenging problem in visualization owing to the subjectiveness of its definition and the difficulty in devising generalizable quantitative metrics. In this paper we address this challenge by measuring the visual complexity of two common forms of cluster-based visualizations: scatter plots and parallel coordinatess. We conceptualize visual complexity as a form of visual uncertainty, which is a measure of the degree of difficulty for humans to interpret a visual representation correctly. We propose an algorithm for estimating visual complexity for the aforementioned visualizations using Allen's interval algebra. We first establish a set of primitive 2-cluster cases in scatter plots and another set for parallel coordinatess based on symmetric isomorphism. We confirm that both are the minimal sets and verify the correctness of their members computationally. We score the uncertainty of each primitive case based on its topological properties, including the existence of overlapping regions, splitting regions and meeting points or edges. We compare a few optional scoring schemes against a set of subjective scores by humans, and identify the one that is the most consistent with the subjective scores. Finally, we extend the 2-cluster measure to k-cluster measure as a general purpose estimator of visual complexity for these two forms of cluster-based visualization
    corecore