
Using Visualization for Visualization: An Ecological Interface

Design Approach to Inputting Data

H. Wrighta,∗, C. Mathersa, J. P. R. B. Waltonb

aDepartment of Computer Science, University of Hull, Hull HU6 7RX, UK
bNumerical Algorithms Group Ltd, Jordan Hill Road, Oxford OX2 8DR, UK

Abstract

Visualization is experiencing growing use by a diverse community, with continuing improve-
ments in the availability and usability of systems. In spite of these developments the problem
of how first to get the data in has received scant attention: the stock approach of pre-defined
readers and programming aids has changed little in the last two decades. This paper pro-
poses an entirely new way of inputting data for scientific visualization that employs rapid
interaction and visual feedback in order to understand how the data is stored. The approach
draws on ideas from the discipline of ecological interface design to extract and control impor-
tant parameters describing the data, at the same time harnessing our innate human ability
to recognise patterns. Crucially, the emphasis is on file format discovery rather than file
format description. In contrast with conventional approaches, the method can therefore still
work even if nothing is known of how the file was originally written, as is often the case with
legacy binary data.

Keywords: File organisation, Information search, Ecological interface design, Pattern
recognition, Scientific visualization

1. Introduction

Visualization provides scientists, re-
searchers and engineers with an invaluable
tool for understanding their data. Since
coming to the fore in 1987 [1], work to
improve the usability of visualization sys-
tems has variously addressed the problem
of data representation [2], technique selec-
tion [3], and satisfying certain goals or in-
terpretation aims [4–6]. More recently, im-
provements have been made in securing the

∗Send correspondence to h.wright@hull.ac.uk

provenance and reproducibility of visualiza-
tions [7, 8] and in tackling the complexity
of using visualization software [9, 10]. How-
ever, the problem of data input continues to
receive comparatively little attention, even
though it is estimated by some expert prac-
titioners to consume up to 90% of the effort
when visualizing clients’ data [11].

In this paper we present a completely
fresh approach to inputting visualization
data that uses visualization at the earliest
stages, even before the file structure is com-
pletely understood. After summarising con-
ventional approaches we show how the prin-

Preprint submitted to Computers and Graphics October 17, 2012

© 2013, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

cipal features of ecological interface design
(EID) – work domain analysis, the abstrac-
tion hierarchy of means-ends relations, and
constraints arising from the work domain –
contribute to defining a mechanism for in-
putting scientific data destined for visual-
ization. This approach encourages think-
ing about the constituent activities of file
input as a set of distinct methods, rather
than the traditional approach of construct-
ing self-contained recipes. We go on to de-
scribe our software implementation of these
methods and illustrate the approach with
two interpretations of binary data carried
out a priori. The paper concludes with a
review of the intended scope of the work
and its contribution to both the scientific
visualization and EID disciplines.

2. Existing Approaches to Inputting
Data

Data intended for visualization falls into
two broad types: it exists either 1) in
some pre-defined format or 2) in some user-
defined or unpublished format. Herein may
lie the reason for the lack of attention paid
to this problem, since the former situation
is generally considered to be resolved whilst
the latter appears unresolvable in general.
It is indeed tempting to assume that in-
putting data according to some pre-defined
standard is a straightforward matter, but
sometimes it is not. Visualization software
that supports multiple file formats usually
requires a different reader function for each
format, so the development effort required
can be substantial. In the field of chemistry
alone, for example, there are over fifty dif-
ferent file formats in use [12].

There are different types of visualization
software but all employ essentially similar
approaches to the support of pre-defined

formats. Turnkey visualizers that are de-
signed to work without customisation by
the user generally have a number of file for-
mats that they can import; systems begin
by supporting a small subset of definitions
which grows over time with each new re-
lease. The class of general-purpose, cus-
tomisable tools known as modular visual-
ization environments (MVEs; [13]) all in-
clude a set of reader modules for common,
pre-defined file formats, though this set may
differ from one MVE to another. As with
turnkey systems, it is common for the num-
ber of reader modules to increase as a sys-
tem matures due to the contributions of
vendors and aficionados.

Where the generating application writes
data in some user-defined, unsupported or
unpublished format, the functionality of the
visualization system must be extended, ei-
ther by programming code to read the file or
describing its format using a built-in tool.
For example, IRIS Explorer’s API allows
users to incorporate their own code into
the visualization system by encapsulating it
within a series of ‘wrappers’ [14]; VTK [15]
provides various reader classes that the user
can extend to fulfill their needs. Examples
of built-in tools for file input are IRIS Ex-
plorer’s QuickLat [14] and DataScribe [14]
tools, the Data Prompter and General Ar-
ray Importer which are components of Open
DX [16], and the AVS/Express Add File Im-
port Tool [17].

Help is therefore at hand, but tackling the
problem at the programming and file de-
scription level ignores a key element: users
of scientific visualization often know some-
thing of how their data may look, or have
useful clues as to how it is stored or was gen-
erated. They may be able to recognise when
the representation is faulty, but such recog-
nition usually begins only after the data has

2

been read in, when the visualization pro-
cess itself is underway. Making better use
of partial knowledge during file input has
motivated a new approach—a mechanism
to input data on a per-solution basis, incor-
porating interaction combined with visual
feedback to guide the process. This phi-
losophy is in complete contrast with exist-
ing methods that require prior knowledge
of the file’s format in order to make any
attempt at reading it. Furthermore, be-
cause the process is intentionally iterative
there is no tendency for the whole reader
to collapse entirely when any small detail
is overlooked. The result is a set of tools
which, whilst they can be used in the con-
ventional way to apply known formats, can
also be used to mine visually for unknown
file storage parameters. This includes bi-
nary files for which, if nothing is known,
nothing can easily be gleaned. It is this
latter property which proves the most valu-
able, in some circumstances yielding com-
plete solutions for file input problems that
would otherwise be completely intractable.
We describe our method as an ecological ap-
proach by analogy with the process control
industries, where operators oversee and ad-
just outputs by direct interaction with in-
formation coming from the production en-
vironment. The next section first describes
EID in its familiar context and then goes on
to apply it afresh to data file input.

3. Inputting Data the Ecological Way

3.1. Principles of ecological interface design

The EID framework was devised to re-
duce the rate at which human errors arise
during the control of complex systems and
to mitigate their effects should they oc-
cur [18]. The framework recognises three
cognitive control mechanisms, namely skills,

rules and knowledge (SRK; [19]), which in
turn give rise to skill-based, rule-based and
knowledge-based behaviour (SBB, RBB,
KBB). The EID approach aims to support
interaction at the lowest appropriate level
of control, whilst at the same time provid-
ing support for higher levels, as needed [18].
Thus for the most part the user will simply
be reactive to signals provided by the dis-
play (SBB), and preferably will act on the
display directly. At a higher level the use
of rules may be prompted by the emergence
of familiar scenarios (RBB) or, more rarely,
problem-solving activity (KBB) will be un-
dertaken on the system as a whole [20]. In
this way, efficiency can be maximised during
normal operations, whilst at the same time
sufficient information remains available to
address unusual situations safely.

A valid question at this point is whether
EID, conceived in order to reduce the ef-
fects of human error, is ever going to be
applicable to the problem of file input. If
we adopt the conventional approach of a
file reader working from an established for-
mat then the answer is surely ‘No’, since the
reader will either work if the format is cor-
rectly understood or fail if not. The human
has little to do in this situation, other than
to look for another reader. However, the
approach we will take is an unconventional
one of testing various hypotheses about the
type of the data, the size of an array and
the meaning and use of the variables. Such
a trial-and-error approach may well already
be the technique of last resort for inputting
unknown file formats but can be impossi-
bly slow when the parameter search space is
very large and the support tools are weak.
As such we can see parallels with the princi-
ples of EID: the need for efficiency (in this
case, to test many hypotheses); the need
to correct a previous assumption or action;

3

and, the need for visibility of the current
(possibly imperfect) overall system state.

Application of the EID approach in the
process control industries typically results
in the integration of a number of different
display elements. Sensor data, constraints
and targets may well appear both graphi-
cally and numerically, and support direct in-
teraction with the observation surface (via
touchscreen or mouse) in order to control
the plant. Displays are therefore config-
ured to allow the system state to be per-
ceived directly and, furthermore, in a way
that affords correct (or corrective) action
(see, for example, [21]). This property of
goal-oriented behaviour resulting from per-
ception of the environment is central to the
well-known ecological theory of visual per-
ception [22], from which EID in turn derives
its name. A key difference, however, is that
the natural ecology (our observed surround-
ings) is visible whereas the system state is
normally invisible. Much of the work of de-
signing a specific ecological interface there-
fore lies in characterising system variables
and their inter-relationships; accomplishing
this task for the case of data file input is the
subject of the next two subsections.

3.2. An abstraction hierarchy of means-end
relations

The starting point for any EID approach
is first of all to carry out a work domain
analysis (WDA), whose aim is to present the
system at different levels of abstraction, the
so-called abstraction hierarchy (AH). Lev-
els are linked by means-end relations that
answer the questions Why?, What? and
How? to achieve a particular goal [23]. For
example, interpreting a byte sequence in a
particular way (the ‘How?’) is the means
to the end of understanding the numerical
values in a file (the ‘Why?’) and the con-

min<Values<max

Primitive type

Length, interpretation

Why?

What?

How?

Why?

What?

How?

Prod(Dims)xLen=File size

Dimensions, rank

Array shape

(a) (b)

Figure 1: A selection of the purposes and functions
pertaining to data input, organised as means-end
relations. Means-end relations answer the goal-
oriented questions ‘Why?’, ‘What?’, and ‘How?’
(cf. [23], Fig. 7.10).

cept (the ‘What?’) relating the two is the
primitive type of the data (Figure 1(a)).
The means-end relations are not anchored
to any particular level: manipulating the
number and sizes of an array’s dimensions,
for example, is the means, along with the
length of the chosen primitive type, of en-
suring it accounts for all the values in a file
(Figure 1(b)). To enable flexible support
in unanticipated scenarios, the AH aims to
capture all such links and, importantly, to
show how decisions may interact. Work
domain analysis is thus very different to
straightforward task analysis, which more
closely reflects the format-descriptive ap-
proach of conventional file readers.

In process control five levels are identi-
fied ranging from the topmost, functional
purpose, through to the lowest, which is
the physical form of the plant itself. For
the current application the functional pur-
pose (FP; Figure 2(a)) is trivial to iden-
tify – it is simply the overall description of
the task, namely ‘File input’. The focus of
the present approach is to interpret binary

4

B
in

a
ry

 f
ile

 i
n
p
u
t

V
a
lu

e
s

A
rr

a
y
s

V
a
ri
a
b
le

s

D
a
ta

 e
x
te

n
t

E
n
d
ia

n
P

ri
m

it
iv

e
 t
y
p
e

A
rr

a
y

d
im

e
n

s
io

n
s

A
rr

a
y
 r

a
n
k

C
o
m

p
o
n
e
n
ts

h
is

to
g
ra

m

m
in

-m
a
x

v
a
lu

e
s

P
la

n
e
V

ie
w

V
o
lu

m
e
V

ie
w

S
lic

e
D

im
L
a
t

c
o
lo

u
r

o
u
tp

u
t

C
h
a
n
n
e
lM

e
rg

e

R
e
a
d
R

a
w

B
in

a
ry

B
y
te

s
T
o
V

a
lu

e
s

S
e
le

c
tB

y
te

s

te
x
tu

a
l
fi
le

n
a
m

e
 i
n
p
u
t

s
ta

rt
-e

n
d

s
lid

e
rs

g
re

y
s
c
a
le

o
u
tp

u
t

d
im

e
n
s
io

n
p
a
ra

m
e
te

rs
v
e
c
to

r
te

x
tu

re

C
h
a
n
g
e
D

im
L
a
t

ty
p
e

s
e
le

c
ti
o
n

m
e
n
u

F
P

A
F

n

G
F

n

P
F

n

P
F

m

(a
)

(b
)

(c
)

(d
)

(e
)

c
o
m

p
o
n
e
n
t

s
e
le

c
ti
o
n

m
e
n
u

F
ig

u
re

2:
T

h
e

ab
st

ra
ct

io
n

h
ie

ra
rc

h
y

of
m

ea
n

s-
en

d
re

la
ti

o
n

s
fo

r
th

e
fi

le
in

p
u

t
w

o
rk

d
o
m

a
in

.
T

h
e

th
re

e
u

p
p

er
le

ve
ls

d
ev

el
o
p

a
n

in
cr

ea
si

n
g
ly

sp
ec

ifi
c

d
es

cr
ip

ti
on

of
th

e
fu

n
ct

io
n

s
in

vo
lv

ed
.

L
ev

el
fo

u
r,

th
e

P
h
y
si

ca
l

F
u

n
ct

io
n

le
ve

l,
d

ep
ic

ts
th

e
m

o
st

im
p

o
rt

a
n
t

o
f

th
e

so
ft

w
a
re

m
et

h
o
d

s
th

at
re

al
is

e
th

es
e

fu
n

ct
io

n
s,

w
h

il
st

th
e

lo
w

es
t

le
ve

l
(P

h
y
si

ca
l

F
o
rm

)
co

n
ta

in
s

th
e

co
n
tr

o
l

m
ec

h
a
n

is
m

s
a
p

p
li

ed
to

th
es

e
m

et
h

o
d

s.
T

h
e

so
ft

w
a
re

im
p

le
m

en
ta

ti
on

of
th

e
ap

p
ro

ac
h

is
d

es
cr

ib
ed

in
m

or
e

d
et

a
il

in
4
.

5

data, as opposed to the far easier problem
of reading text files, so we can immediately
refine this to ‘Binary file input’. This de-
fines the ‘Why?’, but What? does a binary
file consist of, usually? Conventional ap-
proaches assume we already know whether
we are reading e.g. ‘float’ or ‘double’ val-
ues, whether gridded data is stored in row-
major or column-major format and whether
there are single or multiple values associated
with each variable. In abstract terms we are
therefore interested in the make-up of values
in the file, the parameters governing how
these values are organised into arrays and,
if the data is multivalued, the make-up of
variables from these values. These objects
reside in the next level of the AH and, as in
process control, we term this the abstrac-
tion function level (AFn; Figure 2(b)).

To populate the next lower level of the
hierarchy we pose the questions ‘How val-
ues?’, ‘How arrays?’ and ‘How variables?’;
the answers to these questions provide us
with objects for the generalised function
level (GFn; Figure 2(c)). For example, to
find the values will involve finding the ex-
tent of the data within the file, whether it is
stored with least significant or most signif-
icant byte first (its ‘endian’), and knowing
the primitive type. Working out what vari-
ables are in the file may be more involved:
for example, an RGB image file is conven-
tionally described as a 2D arrangement of
three data values but it might initially be
read as a 3D, single-valued array. In this
case a reduction in the rank of the array
holding the constituent values is needed,
possibly followed by a re-ordering step to
match the application’s convention for red,
green and blue components.

Moving the means-end relations down a
level, the objects occurring in the gener-
alised function level (now the ‘Whats?’)

characterise the various unknowns when in-
terpreting a data file: they will be familiar
to anyone who has tried to program a file
reader. Asking ‘How?’ gives us the software
methods in the level below, the physical
function level (PFn; Figure 2(d)). Here we
find, for example, the means to specify the
primitive type in order to interpret values,
and the lattice manipulators (a ‘lattice’ is
IRIS Explorer’s term for an array) that help
with changng array rank, re-dimensioning
arrays and extracting components of vari-
ables. Separating the different requirements
for file input into distinct methods is im-
portant because it conveys the flexibility to
tackle different aspects of the task indepen-
dently of one another according to need. For
instance, whereas a conventional file reader
may be constructed from the outset to read
a 2D array with multiple values, in the EID
approach this same sequence of values might
first be interpreted as a 3D array of single
values whose rank then has to be reduced.
Similarly a 2D array of long integers might
begin life as twice the number of short in-
tegers, until the error is detected and the
primitive type is reinterpreted. This ability
to prioritise the examination of just parts
of the work domain is an important feature
and, because the levels are linked by means-
end relations, the AH is especially suited to
this problem-solving approach [23].

Another distinguishing characteristic of
the EID approach to file input is the role
of the user in validating the operations in
the physical function level. To support this
we have to define appropriate interaction
mechanisms, and to do that we shift the
Why?—What?—How? links down again,
this time to centre the ‘What?’ on the
physical function level. This poses ques-
tions such as ‘How select bytes?’, ‘How as-
sign bytes to values?’ and so on. As before,

6

the answers to these questions are found
in the next level, which now is the phys-
ical form level (PFm; Figure 2(e)). For
example, viewing data value minima and
maxima will often determine whether bytes
from the header have been erroneously in-
cluded, prompting the selection of a dif-
ferent subset of bytes by means of the
selector’s start-end sliders; viewing a his-
togram of data may indicate, by the lack
of correspondence with the expected values,
when a different primitive type selection is
needed. Figure 2(e) shows the interaction
mechanisms we typically use, together with
their relationships to objects in the level
above. Upward-pointing arrows depict user
input to the indicated software methods;
downward-pointing arrows lead to (princi-
pally) graphical outputs with diagnostic ca-
pability; two-way arrows signify interactive
graphics performing both an input and out-
put role.

3.3. Behaviour-shaping constraints

Behaviour-shaping constraints arising
from the above analysis are important for
placing limits on operators’ actions whilst
at the same time allowing flexibility of
response [23]. Looking at Figure 2 we can
see that we need to identify, at various
points, which one of a set of choices is cor-
rect. For example, when determining how
many bytes make up each data value, the
user must decide which of just 11 primitive
types is most likely to describe the data.
The means-end relations show that viewing
histograms of the resulting values could
provide important evidence when making
this decision. In WDA terms, the number
of possible choices is constrained because
values made up of arbitrary numbers of
bytes simply do not occur in the majority
of computer architectures. We might thus

expect the operator to adjust their choice
for this parameter, based on the changing
evidence of the histogram, until the values
fit some known criterion for the data set
under scrutiny.

Another constraint becomes apparent
when combining values to make up the dif-
ferent application variables. For example,
this might involve extracting red, green and
blue pixel values in the correct order, or de-
termining the sequence in which some three-
dimensional vector components are written.
Provided the number of components, C, of
a variable has been determined correctly,
there are O(C!) ways to recombine them.
For scientific visualization this tends to be
tractable since data is usually only mod-
erately multivalued, for example, a volume
containing temperature, pressure and a flow
vector presents just five separate values to
be interpreted.

When interpreting values and variables
the set of choices is therefore modest in size
and the correct interpretation will typically
follow without much difficulty. The situa-
tion is very different, however, when inter-
preting array structures. Here, the essence
of the problem is to find the rank and ex-
tents of the array that holds the values. Let
us take a 2D grid of data for illustration,
where N data values in total have to be ar-
ranged into a rectangular domain of width
W and height H. Clearly N = W ×H, so
a brute-force search of all possible combi-
nations of trial widths and heights W and
H could require the user to scrutinise up
to N visualizations, in other words with
(Wi = i,Hi = N/i) for i = 1 to i = N .
This is clearly impossible for most files but
we can observe that candidate (Wi, Hi) need
only be tested if N = 0 mod(i), that is,
(Wi, Hi) must be factor pairs of N .

Here, then, is a key constraint of the sys-

7

tem: the area-invariant property of a rect-
angle which, as it grows in one dimension,
must shrink in another to continue to ac-
commodate a fixed number of values. This
observation in itself is not enough to ar-
rive at a viable interaction mechanism for
finding the right factor pair: an empty rect-
angle that indicates its allowed sizes when
adjusted by the user helps in knowing how
many factor pairs exist, but not in choosing
which is correct. However, if the values are
represented in situ within this rectangle, we
find that this additional visual feedback ren-
ders the problem suddenly quite tractable.

Figure 3 illustrates the approach using
an image file of 1228800 elements, whose
real width and height, the unknowns of the
problem, are 1280 and 960. The sequence
shows portions of the images that result as
trial widths above and below W are used.
When the trial value is very far from correct,
apparent lines in the image are narrowly
spaced, with a shallow negative gradient for
W � W , positive for W � W . As the trial
width is adjusted the lines widen, reaching
a maximum gradient when W = W ± 1,
before snapping to the correct image of a
rather sleepy dog.

More usually after this operation the
value found is not W itself, but some other
value that belongs to an incorrect factor
pair. A two-stage approach is therefore gen-
erally necessary: first, the rectangle is ad-
justed as above to find a (usually incorrect)
factor pair; second, the correct factor pair
is determined from the appearance of this
intermediate finding. Figure 4 illustrates
this second stage. Here, the trial width and
height are 1920 and 640 respectively, com-
pared with the real width and height of 1280
and 960. In spite of this error, three repeats
of the subject matter can still clearly be
seen in the horizontal direction. Looking at

a) W � W b) W = W + 1

c) W = W

d) W = W − 1 e) W � W

Figure 3: A sequence of images illustrating the ef-
fect of altering the trial width W, which causes the
striped pattern to widen, until the image appears.

a magnified version of the display (Figure 5)
also reveals less obvious twofold interleav-
ing in the vertical direction, which manifest
as apparent stripes of colour running across
the image. If we denote the number of these
horizontal and vertical repeats as rh and rv
respectively and the trial width as W , the
required actual width of the image W can
then be calculated as

W =
rvW

rh
=

2W

3

In this example the trial image is now made
about two-thirds of its current width, and
final adjustments towards the real width are
made using the oblique line patterns shown
previously. The resulting image, now cor-
rect in both width and height, looks exactly
like Figure 3(c).

Hunting visually for factor pairs is possi-
ble due to the extraordinary pattern recog-

8

Figure 4: A colour image of a sleeping dog, illus-
trating the horizontal repeating pattern that results
when the trial width is an incorrect factor of the to-
tal number of elements.

Figure 5: A magnification of Figure 4 illustrating
the corresponding vertical interleaved pattern.

nition ability of the human visual system,
coupled with the natural spatial coherence
of data values that is present in files of sci-
entific data. Provided there are features
within the data, each persisting over several
rows of the display, distinctive patterns con-
sisting of sloping lines and repeated motifs
will always develop when the trial width is
adjusted. The sloping lines occur because,
in each new row in the display, the start of a
feature is offset from its start position in the
previous row; over several rows the effect is
to smear the feature. Our visual system is
always striving to model what we see, so
the individual features, all smeared to the
same degree at any one instant, are con-
flated into a set of sloping lines. Repeated
motifs occur when trial widths are integer
or rational number multiples of the actual
width. In these cases the start position of
a feature lines up several times in succes-
sive rows, or in every second, third, fourth
and so on row. Over many rows and many
features, more than enough information re-
mains for recognition, as Figure 4 shows.

The next section describes IFIT (Interac-
tive File Input Toolkit), the set of software
tools we have implemented to utilise these
constraining properties.

4. Software Implementation

The toolkit we have developed is based
on the IRIS Explorer MVE, which we re-
call from the introductory discussion allows
code to be added to the released software
by means of ‘wrappers’. In this way we can
re-use existing functions if they are already
available or add them if needed, and to the
toolkit user the resulting modules are in-
distinguishable from those provided by the
vendor. It should be noted that use of an
MVE is not a requirement of the approach

9

– we could instead have developed a class
library of methods and a template calling
program.

The modules used fall into two categories:
those performing transformations of data
and those providing the user with feedback
on the current state of the file interpreta-
tion.

4.1. Transformation modules

Modules in this section of the toolkit al-
low for the selection and manipulation of
the data. Existing modules in the IRIS Ex-
plorer release that are useful in IFIT in-
clude modules for splitting and recombin-
ing variables such as MultiChannelSelect,
ChannelSelect and ChannelMerge. Manip-
ulation of raw bytes is hardly ever needed
in visualization so here we had to add new
modules ReadRawBinary, SelectBytes, and
BytesToValues. Choices to be made during
the file input process are realised as param-
eters in the user interfaces of these modules
so, for example, SelectBytes has sliders to
determine the beginning and end of the byte
sequence to be examined, specified relative
to the start or end of a file (Figure 6). Other
modules implement or apply the constraints
identified in Section 3.3: BytesToValues has
a menu listing the primitive data types ‘un-
signed int’, ‘short’, ‘float’ and so on, so the
user can easily experiment with the number
of bytes in the data type, and their interpre-
tation (Figure 7). We also added a module
ChangeDimLat for generally redimension-
ing arrays, with sliders for receiving (from
an upstream module, typically PlaneView
or VolumeView, see Section 4.2), or speci-
fying, up to ten array dimensions (Figure 8).
SliceDimLat allows extracting reduced-rank
arrays from higher-dimensioned structures,
which can then be recombined using Chan-
nelMerge.

Figure 6: Clipping a 32-byte header from the start
of a 50MB binary file. The end selection is here left
to run to the full extent of the file, without the user
needing to know how many bytes this comprises.
Selecting values relative to the end of the file would
conversely clip a 32-byte footer.

Figure 7: Interpreting values by constraining raw
bytes to combine only in particular configurations
allowed by the computer architecture.

Figure 8: Dimensioning an array of values in order
to apply the volume-invariant constraint W ×H ×
D = 4160000 to a 3-variable data set. This module
is typically driven from upstream or can be adjusted
by the user.

10

Figure 9: Moving the mouse left or right respec-
tively increases or decreases the trial width, until
some recognisable structure is seen. A zoom option
allows investigation of artifacts such as the vertical
interleaving in Figure 5.

4.2. Feedback modules

Existing feedback modules range from
something as simple as the PrintLat and
MinMax modules that report numerical val-
ues on their interfaces, to IRIS Explorer’s
Graph3D and DisplayImg modules, which
respectively display a histogram and image
data. A new module was needed to im-
plement the rectangular area-invariant dis-
play, due to the rapid interaction needed
with this interface element. This module,
PlaneView, thus allows direct interaction
via the mouse on the display surface it-
self, which simultaneously shows the current
view of the data, drawn as one greyscale
pixel per value (Figure 9). In usage the
width of the display rectangle is altered con-
tinuously by rolling the mouse pointer back
and forth horizontally. In order to be salient
to the perceptual task [20], movement to
the right increases the width whereas going
to the left reduces it. The overall effect is
reminiscent of tuning an old-fashioned tele-
vision receiver by turning its dial — as the
required setting is approached, the diagonal
stripes gradually resolve into a recognisable

picture (or, more usually, a repeated form of
it). This combination of visual feedback and
rapidly trialling widths means that the eligi-
ble factor pairs of N are searched extremely
efficiently, more than adequately compen-
sating for the inherent size of the problem.
Once the final adjustments to find the cor-
rect width and height have been made, as
described in Section 3.3, these parameters
are used by the ChangeDimLat module to
dimension the data array. PlaneView can
also be used to interpret list arrays and this
is demonstrated in Section 5.2.

Similar patterns to Figure 9 were also
seen in 3D data read in using incorrect di-
mensions, prompting the development of a
VolumeView module. VolumeView oper-
ates similarly to PlaneView, but the addi-
tion of another two tiles extends the meth-
ods to 3D. Each tile views a different orthog-
onal cross-section through the array and
presents the same visual patterns that are
seen in the PlaneView module. Mouse inter-
action is analogous to that in the PlaneView
module, but now operating in two directions
corresponding to the two axes of each view
(Figure 10). In addition, animation moves
each view back and forth along its respec-
tive axis, creating a movie of the data in
that axis. If the trial dimensions are correct,
the effect is one of moving each slice through
the data in question. If incorrect, temporal
aliasing occurs similar to that seen at a cin-
ema when the film is run a little too fast
or too slowly, causing the frame edge to ad-
vance up or down the screen. The speed and
direction of the movement seen by the user
respectively cue the amount and direction
of the correction to be applied to the cor-
responding trial dimension. As in the case
of PlaneView, the power of the method lies
in its combination of visual feedback and
rapid interaction with the array’s trial di-

11

Figure 10: Interpreting an IRIS Explorer lattice-formatted file of a CT scan using VolumeView. The small
Z dimension is due to the lower resolution in this direction compared to X and Y.

mensions.

5. IFIT in Use

5.1. Interpreting a flow volume

The first example scenario is a flow vol-
ume comprising binary data and no header,
which is however known from its file name
to be a jet of water captured using particle
velocimetry. Two modules have been tried
whose help files describe them as binary
readers but both rely on having a header
in a certain format: accordingly, one gave
errors and no output and the other crashed.

An end-user of visualization would not
get past this stage but a visualization sup-
port person or developer user would proba-
bly try writing a program to read the binary
file and then look at possible interpreta-
tions of the values. By this means the data
type could probably be guessed as ‘float’ but
without a header the problem remains as to
how to dimension the data. Interpreting the
data as a volume with equal sides is a rea-
sonable guess but it gives an isosurface of
flow magnitude that is highly confused and
fragmented, whereas for a jet of water we
would expect a coherent region with differ-
ent speed to its surroundings (Figure 11).

Figure 11: An isosurface of flow magnitude shows
fragmented and chaotic appearance that is typical
of being wrongly dimensioned.

A few further likely combinations of width,
height and depth might be tried but the iso-
surface takes too long to compute to make
an effective search of the enormous space of
factor triples that exists for this data.

Figure 12(a) shows the IFIT module
pipeline created for interpreting this vol-
ume of data. The starting point is to read
the whole file using ReadRawBinary, which
then passes the data to BytesToValues, set
initially to give it a trial interpretation of
‘unsigned bytes’. In the VolumeView win-
dow, arbitrary values for W , H and D re-
veal a ‘pepper-and-salt’ texture, left-most
in Figure 12(b), that is characteristic of 32-
or 64-bit data interpreted inappropriately.

12

(a)

(b)

(c)

(d)

(e)

Figure 12: An IFIT pipeline (a), used first to interpret the primitive type (b), then to find the correct width
((c) and (d)), and finally height and depth (e) of a flow volume.

13

Slight adjustment of W shows a marked re-
peat in this texture every 12 bytes overlay-
ing a less obvious pattern every four bytes
(Figure 12(b), middle). It is therefore pro-
posed there are three ‘floats’ per data loca-
tion, which is consistent with the generat-
ing application. Reinterpretation as ‘floats’
using BytesToValues yields the right-most
graphic of Figure 12(b), whose three-fold
vertical stripes are characteristic of vector
values that are spatially coherent but ex-
hibiting rather different component values.
Work now begins on a view of the whole file
to determine the correct width, periodically
increasing the zoom to check that the ver-
tical fragmentation in Figure 12(b), right,
is diminishing. To aid in this, the mouse
drag direction is constrained to move only
in the horizontal sense. Figure 12(c) shows
a typical intermediate where W is a multi-
ple of 3 so the stripes are evident, but an
overall sloping line motif shows W is still
some way off. Figure 12(d) is the first in-
termediate where W is a rational number
multiple of W : the horizontal discontinuity
shows W is 50% too big, but this is now eas-
ily corrected and attention turns to finding
H and, by implication due to the volume-
invariant constraint, D. The mouse drag
direction is now constrained to move only
in the vertical sense and the visual focus
switches to removing vertical repeats. Fig-
ure 12(e) shows the whole VolumeView win-
dow as H approaches and, finally, matches
H. Note how the sloping lines in the top
tile resolve at the same rate as those in the
lower right tile. At this stage, W is still
three times the domain width due to the
multiple vector components, but H and D
are correct.

The ChangeDimLat module is prepared
in order to create a 4-dimensional array,
with Dim0 set to 3 (see Figure 8). Dim1

Figure 13: An isosurface of flow magnitude cor-
rectly dimensioned c.f. Figure 11.

is connected to VolumeView’s output of W ,
and divided by 3 on arrival at ChangeDim-
Lat using IRIS Explorer’s parameter func-
tion facility. The value for H flows to
Dim2 and D to Dim3 (purple wires in Fig-
ure 12(a)). Three slices must then be made
in the fastest varying dimension, Dim0, in
order to extract the volumes of individual
vector components, because IRIS Explorer’s
data model treats the data dimension differ-
ently to spatial dimensions. We can think
of this stage in terms of re-interpreting the
data as three arrays with rank 3 and shape
(W/3, H, D) rather than one with rank 4
and shape (3, W/3, H, D). These slices
are then re-combined by ChannelMerge so
they can be processed as components of a
single vector. Figure 13 shows the isosur-
face of magnitude that results, which can
be compared with the fragmented version
in Figure 11 arising when incorrect dimen-
sions were tried originally.

The pipeline in Figure 12(a) can now be
stored with its parameter values intact, in
order for it to be re-used later with the same
data file.

5.2. Interpreting finite element simulation
data

Although one of the simplest arrange-
ments encountered, the gridded data of Sec-

14

tion 5.1 is very common in scientific vi-
sualization and interpretation of any such
data file will proceed on the lines described,
whether it consists of single or multiple vari-
ables, be they scalars, vectors or tensors.
Visual feedback can also help with scat-
tered and cell-based data if there are multi-
ple bytes at each node. In this case, rather
than find the width, height and depth of
the problem domain, PlaneView is used on
the file’s list arrays to find the number of
variables and nodes.

The second example scenario concerns
the output of a finite element simulation
whose file name indicates it contains 2D flow
around a cylinder. We would thus expect to
find some nodal coordinates, data variables
and mesh of elements but the file has been
separated from its metadata so the num-
ber of nodes, the type(s) of element and the
type and number of variables has to be de-
termined a priori.

The interpretation begins with an over-
all view of the file as unsigned bytes (Fig-
ure 14(a)), and confirmation that no single
W and H can be found. With arbitrary W
and H the file clearly consists of three sec-
tions, the bottom and top of which show the
same ‘pepper-and-salt’ texture as seen pre-
viously so probably contain ‘floats’ or ‘dou-
bles’. The middle part also carries a texture
but with more marked contrast, and this is
characteristic of short or long integers inter-
preted as byte data. Following some adjust-
ment of W this middle section resolves to
the 4-fold pattern in Figure 14(b), so clearly
the data are 32-bit, rather than 16-bit, inte-
gers and are almost certainly the elements
comprising the mesh. At the same time, the
top section is found to have subtle eight-
fold structure within a more marked overall
24-fold pattern (Figure 14(c)). This section
is therefore proposed to consist of triplets

of ‘doubles’, probably relating to the node
list. These could be data variables or, if
the domain is a 2D manifold in 3D, coordi-
nates. The bottom section shows only an 8-
fold pattern with no smaller scale repeat ev-
ident within (Figure 14(d)). It is therefore
not possible to decide at this stage whether
these are ‘floats’ or ‘doubles’, but if this sec-
tion also relates to nodes its size in bytes
must be one-third that of the top section
since the continuity of the 8-fold repeat is
unbroken throughout the section. The sug-
gested related sizes of the top and bottom
section are now used to ‘bracket’ the mid-
dle section, by setting up two SelectBytes
modules – one to clip Nx8 bytes from the
start of the file and another Nx24 from the
end, where N is specified using a separate
slider widget that drives both modules’ pa-
rameters. The remaining portion of the file
is viewed with PlaneView, and the value for
N increased until nearly, but not all, of the
‘float’ and ‘double’ sections have been re-
moved (Figure 14(e)). Final adjustments of
N are not guided visually but instead us-
ing the minimum and maximum values of
the long integers in the middle section. As
the trial value of N reaches 847, these are
reported as zero and 846 respectively, giv-
ing confidence there are 847 nodes and some
unknown number of elements relating these
nodes’ zero-based indices.

All that remains now is to assign the top
and bottom sections to variables or coor-
dinates, and decide whether the middle sec-
tion, the element list, can be interpreted fur-
ther. Recall that it is still uncertain whether
the bottom section contains 1694 ‘floats’ or
847 ‘doubles’, but the top section almost
certainly consists of 847 triplets of ‘doubles’.
It would be unusual to store coordinates
with greater precision than data, so there-
fore seems likely the bottom section con-

15

(a)

(b) (c)

(d) (e)

Figure 14: Visualizing a whole file as a sequence of bytes (a), from which it is discovered the middle section
contains long integers (b), the top section triplets of ‘doubles’ (c), and the bottom section ‘floats’ or ‘doubles’
(d). Progressively clipping the floating point values away from the top and bottom of the middle section
confirms the number of nodes and the likely number of elements linking these (e).

16

(a)

(b)

Figure 15: Confirming the ‘floats’ are coordinates
(a) and the elements are quadrilaterals (b).

tains coordinates. This hypothesis is tested
by plotting the nodes as points, which are
seen to fill a rectangle (Figure 15(a)), lend-
ing weight to this suggestion. The list of
elements linking the points is found from
the middle section by observing the num-
ber of long integers there is divisible by 4,
but not by 3, making it more likely (though
not certain) that the elements are quadri-
laterals. A mesh constructed using this
list and the supposed coordinates looks like
(Figure 15(b)). Further investigation of the
triplets of ‘doubles’ in the top section using
contours and an arrow plot reveals there is
a 2D vector and a scalar rather than a 3D
vector.

5.3. Skills, rules and knowledge revisited

The value of the EID approach in its gen-
eral formulation can be captured as three

principles, namely to 1) “support interac-
tion via time-space signals”; 2) “provide a
consistent one-to-one mapping between the
work domain constraints and the cues [...]
provided by the interface”; and, 3) “rep-
resent the work domain in the form of an
abstraction hierarchy to serve as an exter-
nalised mental model” [20]. In short, it
should simultaneously support all three lev-
els of SRK-based behaviours (SBB, RBB,
KBB). At the skill-based level there are the
mouse interactions directly on the display,
moving left and right in response to the
changing pattern seen there (Figures 9, 10
and 12). The goal of getting the sloping
lines to widen is easily learned and is inde-
pendent of the particular type of file being
tackled, so the response quickly becomes in-
nate. At the same time as this low-level con-
trol is operating, other visual information is
available for rule-based reasoning. As was
seen in the examples in Section 5, misinter-
pretation of the primitive type causes char-
acteristic textures. When the trial width is
a multiple of the number of bytes in the ac-
tual primitive type, these textures resolve
into vertical stripes as in Figure 12(b) and
Figure 14(b) to (d). Eliminating horizon-
tally repeating motifs or horizontal disconti-
nuities invokes another set of rules involving
the trial width, with the response enacted
according to the analysis in Section 3.3.
However, vertical repeats or vertical breaks
in continuity, provided there are not also
any interleaving artifacts, are an indication
that the data has another dimension and
requires input to VolumeView, rather than
PlaneView. Figure 16 shows the output of
a simulation of flow, temperature and pres-
sure within a double glazing panel that is
initially input to PlaneView. The slices ap-
pear stacked on top of one another rather
than filling the depth of the volume.

17

Figure 16: RBB: a simulation output volume ini-
tially interpreted as planar data.

(a) (b) (c)

Figure 17: RBB: unexpected ‘contours’ in blood
flow magnitude due to incorrect byte alignment (a).
Adjusting the starting point of the byte selection
results in (b). Similar contours are seen when this
‘short’ data is interpreted as ‘byte’ (c), but this er-
ror is distinguished from (a) by also having vertical
stripes similar to those seen in Figures 12 and 14.

The data files interpreted in Sections 5.1
and 5.2 did not contain headers but when
present they may offset the interpreta-
tion from its true starting point. For ex-
ample, if a byte sequence including the
header is interpreted correctly as ‘short’
data, incorrect byte alignment caused by an
odd number of ‘byte’ types in the header
causes apparent contours that are not typ-
ical of the data (Figure 17). As well as
rule-based behaviour, knowledge-based be-
haviour played a role in correcting this par-
ticular interpretation because the file is a
single positron emission scan to measure
blood flow magnitudes, which typically vary
smoothly through the anatomy.

Knowledge-based behaviour was also key

(a) (b)

Figure 18: KBB: Reading a slice of CT data as half
the actual number of double-length values produces
distortion (a) in a structure that is known to be
roughly circular (b).

in correcting the aspect ratio in the CT data
of Figure 18. The data file is a cross-section
of femoral bone that should be roughly cir-
cular, but a combination of an incorrect di-
mension and compensating incorrect primi-
tive type gives an elongated shape.

5.4. Discussion

The modules that implement the visual
feedback described in Section 3.3 are espe-
cially effective for gridded data of the type
interpreted in Section 5.1. Provided there
is visible variation in the values spanning
the domain, they will yield complete solu-
tions even when nothing is known about
the file format. Indeed, for this type of
data, using IFIT is quicker than compil-
ing a new module to input the file, even
if the format is known. As was demon-
strated in Figure 10, it is not necessary to
interpret header information to find data
input parameters governing the array di-
mensions. However, if this is done, the
saved pipeline effectively becomes a reader
for all files of the type, and not just the
particular instance which has been inter-
preted. We denote these two approaches
as providing ‘single-use’ and ‘complete-use’
solutions respectively. As was seen in Sec-
tion 5.2, interpreting cell-based data is less

18

automatic and requires more problem solv-
ing behaviour, but the visual approach en-
ables a strategy to be formulated and car-
ried out. The greater effort required to in-
terpret such a file would nonetheless be well
spent if the data was valuable and could not
be retrieved by other means.

Visual interpretation can be difficult if
the data in the file has periodicity, since it is
difficult to separate this from the repetition
caused by incorrect factor pairs. Likewise
if there is very little variation in values or
the variation is rather chaotic the require-
ment for distinctiveness and coherence, on
which the visual tools depend, is not ful-
filled. An intriguing possibility if the visual
approach became widespread would be to
include with all data sets a distinctive in-
set pattern, in as many dimensions as the
data set spans, that acts as a key for in-
terpretation independent of the data itself.
This would be the multi-dimensional ana-
logue of the 2D test card that used to be
transmitted to aid in tuning an analogue
television. For now, if a file yields no vi-
sual information of any use when viewed
with PlaneView or VolumeView, the trans-
formation modules of Section 4.1 can still be
used and the resulting data passed through
a standard visualization pipeline for verifi-
cation. However, in this case the param-
eters governing the file’s organisation will
need to be known in advance rather than
be discovered. In this case the benefit of the
EID approach, that is, work domain analy-
sis and the abstraction hierarchy, lies in ex-
pressing file input as a set of distinct meth-
ods (Figure 2(d)) that are accessible to a
non-programmer user.

Single or multiple values representing
heights, CT values, temperature, vector
components, and so on, all map to greyscale
in PlaneView and VolumeView. These tools

use simple display algorithms with O(N)
time complexity, so the file interpretation
activity proceeds at interactive rates re-
gardless of the ultimate intended visualiza-
tion technique. More complex and time-
consuming techniques such as contouring
and isosurfacing are only invoked once the
arrays have been dimensioned and variables
assigned. The simple display algorithms
used have also been made robust to rapid
and wide variations in the primitive data
type, domain size, and numerical range of
values passed to them. The same is not al-
ways true of the intended visualization tech-
niques themselves, and is another reason to
complete the file interpretation before con-
tinuing to the visualization stage per se.

At present, vector data is treated as mul-
tiple scalars and interpretation proceeds
on the lines of Figure 12. Using IRIS
Explorer’s LatLIC module, we have also
used the techniques of Section 3.3 to carry
out a proof-of-concept interpretation of a
file of vector values rendered to an im-
age as a texture. This may prove to be
a more satisfactory approach than treat-
ing the vector components individually if
the variation required for recognising struc-
ture resides in the vectors’ directions rather
than their magnitudes. However, incor-
poration into PlaneView and VolumeView
themselves would require a real-time algo-
rithm such as [25] to achieve interactivity
and remains to be done. Our test data
set did not include tensor data but the
same general principle would apply, pro-
vided an image-based visualization of the
tensor field showed sufficient structure, and
could be carried out in real-time (see for
example [26]). Handling large data sets
presents a further concern since IFIT caches
all the data in order to produce the charac-
teristic visual patterns, something which is

19

clearly impossible if a file comprises many
gigabytes. To address this would require
interpreting a file in sections: for example,
inspecting the leading values and first few
planes of data in a CT volume would find
the header length, primitive type, and vol-
ume width and height; the last few planes
and trailing values would yield the footer
length, if any; combination of these param-
eters with the overall file size would allow
solving for the volume’s depth. Once again,
implementing a partial-cacheing approach
to ReadRawBinary to support this way of
working remains an item of future work.

6. Summary and contribution

This paper has described a novel mecha-
nism for inputting data intended for scien-
tific visualization, together with its imple-
mentation as a set of modules in the IRIS
Explorer MVE. In contrast to current ap-
proaches, the toolkit uses both iteration and
visual feedback to monitor and correct con-
tinuously the parameters that govern the
input process. The result is a flexible and
multi-purpose facility that doesn’t ‘fall at
the first hurdle’, as existing tools are prone
to.

6.1. Applications and scope

IFIT has been applied to a number of
problems, all of which were real-world data
sources provided by a range of users. As
well as being successful in importing files
in known formats such as DICOM [27],
FITS [28], and DEM [29], we have found
it to be particularly useful where data files
have to be interpreted without detailed
knowledge of their formats. These include
files written in legacy formats for which
the documentation (if originally extant) is

unavailable, or files that adhere to a for-
mat which has been superseded by an up-
dated version without allowing for conver-
sion from the old format. If the file is bi-
nary, such problems can be completely in-
tractable to conventional tools, yet easy to
decipher using IFIT.

We have also had experience of a consul-
tancy scenario, in which users provide data
files that are to be visualized without giv-
ing any description of their formats—either
because they didn’t know anything about
them, or because they were unable to dis-
close such information. Finally, IFIT has
been used to extract data from hardware
which stores it in a binary format that is
unpublished by the manufacturers. Here,
the toolkit gives the user new kinds of ac-
cess to the data which they have collected—
for example, to analyse and visualize it us-
ing their own software—but without com-
promising the intellectual property vested
in the format itself.

Our experience in using IFIT is that it
is simpler than programming or scripting
but harder than using a pre-coded solu-
tion. If a reader exists for a file that has
been properly identified and conforms to
the format, then IFIT is not the tool of
choice. However, when a reader must be
constructed it presents a viable alternative
to current methods. Moreover, for binary
files in unknown formats, IFIT may be suc-
cessful where other approaches fail com-
pletely.

6.2. Extending the application of EID

Ecological interface design has a
pedigree stretching back more than 20
years [18]. Much work to date has target-
ted continuous-process systems, describing,
for example, the simulation of pasteuri-
sation [24], catalytic cracking [30], and

20

nuclear power plant [31]. In addition to
these classic applications the potential of
EID has also been described for increasingly
diverse fields, including discrete production
management [32], information search and
retrieval tasks [33], computer network
management [34] and driver assistance sys-
tems [35]. The present work demonstrates
the application of EID to yet another very
different area, further confirming its value
for a wide range of tasks.

We implemented our toolkit in an MVE
for the purposes of visualization, but the
principles are suited to other software gen-
res and, indeed, to other applications.
Graphic design, computer forensics, data
mining and visual analytics all suffer the
same problems of file format specification
and data interchange complexity that are
seen in visualization, and all potentially are
amenable to a visual approach. We hope
that our demonstration of the applicability
of EID to scientific visualization will encour-
age other researchers in turn to take a fresh
look at their own field.

Acknowledgements

The ‘test card’ idea was contributed by
one of the reviewers; we thank them and all
who read the paper for their interesting and
helpful suggestions.

Thanks are due to many current and for-
mer colleagues at the Universities of Hull
and Leeds who contributed data sets for
testing, a number of which appear in this
paper, including contributions to the exten-
sive test data set that ships with IRIS Ex-
plorer, collated originally by Silicon Graph-
ics, Inc. and latterly the Numerical Algo-
rithms Group (NAG) Ltd. We also wish
to acknowledge Stanford University and the

University of North Carolina for placing
many useful data sets in the public domain.

CM acknowledges the UK Engineering
and Physical Sciences Research Council and
NAG Ltd for supporting a CASE stu-
dentship, during which the IFIT software
was developed.

References

[1] B. H. McCormick, T. A. DeFanti, M. D.
Brown (eds.), Visualization in scientific com-
puting, Comput. Graph. (ACM) 21 (6) (1987).

[2] P. K. Robertson, A methodology for choosing
data representations, IEEE Comput. Graph.
Appl. 11 (3) (1991) 56–67.

[3] H. Senay, E. Ignatius, A knowledge-based sys-
tem for visualization design, IEEE Comput.
Graph. Appl. 14 (6) (1994) 36–47.

[4] S. M. Casner, A task-analytic approach to
the automated design of graphic presentations,
ACM Trans. Graph. 10 (2) (1991) 111–151.

[5] B. E. Rogowitz, L. A. Treinish, An architec-
ture for rule-based visualization, in: G. M.
Nielson, R. D. Bergeron (Eds.), IEEE Visu-
alization ‘93, IEEE Computer Society Press,
1993, pp. 236–243.

[6] I. Fujishiro, Y. Takeshima, Y. Ichikawa,
K. Nakamura, GADGET: Goal-oriented ap-
plication design guidance for modular visual-
ization environments, in: R. Yagel, H. Hagen
(Eds.), IEEE Visualization ‘97, IEEE Com-
puter Society Press, 1997, pp. 245–252.

[7] T. J. Jankun-Kelly, K.-L. Ma, M. Gertz, A
model and framework for visualization ex-
ploration, IEEE Trans. Vis. Comput. Graph.
13 (2) (2007) 357–369.

[8] C. T. Silva, J. Freire, S. P. Callahan, Prove-
nance for visualizations: Reproducibility and
beyond, Comput. Sci. Eng. 9 (5) (2007) 82–89.

[9] D. Koop, C. E. Scheidegger, S. P. Callahan,
J. Freire, C. T. Silva, Viscomplete: Automat-
ing suggestions for visualization pipelines,
IEEE Trans. Vis. Comput. Graph. 14 (6)
(2008) 1691–1698.

[10] E. Santos, L. Lins, J. P. Ahrens, J. Freire,
C. T. Silva, VISMASHUP: Streamlining the
creation of custom visualization applications,
IEEE Trans. Vis. Comput. Graph. 15 (6)
(2009) 1539–1546.

21

[11] W. Benger, On safari in the file format
jungle—why can’t you visualize my data?,
Comput. Sci. Eng. 11 (6) (2009) 98–102.

[12] H. Rzepa, The Chemical MIME Homepage,
http://www.ch.ic.ac.uk/chemime/ [Accessed
December 2011].

[13] G. Cameron, Modular visualization environ-
ments: Past, present and future, Comput.
Graph. (ACM) 29 (2) (1995).

[14] J. P. R. B. Walton, NAG’s IRIS Explorer,
in: C. D. Hansen, C. R. Johnson (Eds.), The
Visualization Handbook, Elsevier Butterworth
Heinemann, 2005, pp. 633–654.

[15] W. Schroeder, K. Martin, B. Lorensen, The
Visualization Toolkit: An object-oriented ap-
proach to 3D graphics, Kitware, Inc., 2006.

[16] D. Thompson, J. Braun, R. Ford, OpenDX:
Paths to visualization, Visualization and Im-
agery Solutions, Inc., 2001.

[17] Advanced Visualization Systems, Visualiza-
tion Concepts, Chapter 4: Importing Data,
http://help.avs.com/Express/doc/help 722/
books/vizcons/VizConceptsTOC.html [Ac-
cessed December 2011].

[18] J. Rasmussen, K. J. Vicente, Coping with hu-
man errors through system design: implica-
tions for ecological interface design, Int. J.
Man. Mach. Stud. 31 (5) (1989) 517–534.

[19] J. Rasmussen, Skills, rules and knowledge: sig-
nals, signs and symbols, and other distinctions
in human performance models, IEEE Trans.
Syst. Man. Cybern. 13 (3) (1983) 257–267.

[20] K. J. Vicente, J. Rasmussen, Ecological in-
terface design: theoretical foundations, IEEE
Trans. Syst. Man. Cybern. 22 (4) (1992) 589–
606.

[21] D. V. C. Reising, P. M. Sanderson, Ecological
interface design for pasteurizer II: A process
description of semantic mapping, Hum. Fac-
tors 44 (2) (2002) 222–247.

[22] J. J. Gibson, The Ecological Approach to Vi-
sual Perception, Houghton Mifflin, Boston,
Mass., 1979.

[23] K. J. Vicente, Cognitive Work Analysis: to-
ward safe, productive, and healthy computer-
based work, Lawrence Erlbaum Associates,
Mahwah, N.J., 1999.

[24] D. V. C. Reising, P. M. Sanderson, Work do-
main analysis and sensors II: Pasteurizer II
case study, Int. J. Hum. Comput. Stud. 56 (6)
(2002) 597–637.

[25] J. J. van Wijk, Image-based flow visualization,
ACM Trans. Graph. 21 (3) (2002) 745–754.

[26] E. Zhang, J. Hays, G. Turk, Interactive ten-
sor field design and visualization on surfaces,
IEEE Trans. Vis. Comput. Graph. 13 (1)
(2007) 94–107.

[27] DICOM, Digital Imaging and Communica-
tions in Medicine, http://medical.nema.org/
[Accessed December 2011].

[28] D. Wells, E. Greisen, R. Harten, FITS: A flex-
ible image transport system, Astron. Astro-
phys. Suppl. Ser. 44 (1981) 367–370.

[29] USGS, The USGS DEM standards,
http://data.geocomm.com/dem/ [Accessed
December 2011].

[30] G. A. Jamieson, K. J. Vicente, Ecological in-
terface design for petrochemical applications:
supporting operator adaptation, continuous
learning, and distributed, collaborative work,
Comput. Chem. Eng. 25 (7-8) (2001) 1055–
1074.

[31] N. Lau, G. A. Jamieson, Ecological interface
design for the condenser subsystems of a boil-
ing water reactor, in: 27th Canadian Nuclear
Society Annual Conference, Canadian Nuclear
Society, 2006.

[32] D. Trentesaux, N. Moray, C. Tahon, Integra-
tion of the human operator into responsive dis-
crete production management systems, Eur. J.
Oper. Res. 109 (2) (1998) 342–361.

[33] W. Xu, M. J. Dainoff, L. S. Mark, Facilitate
complex search tasks in hypertext by external-
izing functional properties of a work domain,
Int. J. Hum. Comput. Interact. 11 (3) (1999)
201–229.

[34] C. M. Burns, J. Kuo, S. Ng, Ecological inter-
face design: a new approach for visualizing
network management, Comput. Netw. 43 (3)
(2003) 369–388.

[35] P. A. Mendoza, A. Angelelli, A. Lindgren, Eco-
logical interface design inspired human ma-
chine interface for advanced driver assistance
systems, IET Intell. Transp. Syst. 5 (1) (2011)
53–59.

22

