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Summary. — This paper offers a conceptually straightforward method for the
calculation of stresses in polarisable media based on the notion of a drive form and
its property of being closed in spacetimes with symmetry. After an outline of the
notation required to exploit the powerful exterior calculus of differential forms, a dis-
cussion of the relation between Killing isometries and conservation laws for smooth
and distributional drive forms is given. Instantaneous forces on isolated spacetime
domains and regions with interfaces are defined, based on manifestly covariant equa-
tions of motion. The remaining sections apply these notions to media that sustain
electromagnetic stresses, with emphasis on homogeneous magnetoelectric material.
An explicit calculation of the average pressure exerted by a monochromatic wave
normally incident on a homogeneous, magnetoelectric slab in vacuo is presented and
the concluding section summarizes how this pressure depends on the parameters in
the magnetoelectric tensors for the medium.

PACS 02.40.Hw — Classical differential geometry.

PACS 03.50.De — Classical electromagnetism, Maxwell equations.

PACS 41.20.-q — Applied classical electromagnetism.

PACS 41.20.Jb — Electromagnetic wave propagation; radiowave propagation.
PACS 46.05.+b — General theory of continuum mechanics of solids.

1. — Introduction

The calculation of stresses in material media has extensive application in modern
science. The balance laws of continuum mechanics offer an established framework for
such calculations for matter subject to a wide class of constitutive properties that at-
tempt to accommodate interaction with the environment in terms of phenomenological
relations [1,2]. Such relations are not always easily accessible via experiment, since
the response of matter to internal and external interactions can be very complex. If
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one formulates these interactions in the language of forces derived from stress-energy-
momentum tensors, then it is sometimes non-trivial to determine experimentally an
appropriate tensor that can be associated with a particular class of interactions on a
macroscopic scale [3-8]. This problem has led to numerous debates over the last century
about how best to formulate the transmission of electromagnetic forces in polarisable
media. Since the electromagnetic interaction is fundamentally relativistic in nature, the
problem is compounded if one insists on a relativistically (covariant) theoretical formu-
lation to compare with experiment in the laboratory. Judged by the large literature on
this subject, there is no universal consensus on how best to calculate forces in polarisable
media and hence the needed experimental input into the subject has been of uncertain
value in the past. However, modern technology—with the refined experimental proce-
dures now available—offers the possibility that the appropriate constitutive relations for
certain classes of polarisable matter can be determined experimentally [9] over a broad
range of field intensities, frequencies and geometric configurations. Furthermore, new
materials with novel constitutive properties are being fabricated [10] and their response
to time-varying electromagnetic fields also offers new potential for technological advances.
With these points in mind, this paper offers a conceptually straightforward method for
the calculation of stresses in polarisable media, based on the notion of a drive form and
its property of being closed in spacetimes with symmetry. Section 2 outlines the nota-
tion required to exploit the powerful exterior calculus of differential forms that is used
throughout the article. Sections 3 and 4 relate the isometries to conservation laws for
smooth and distributional drive forms. Sections 5 and 6 discuss equations of motion in
spacetime and how they may be used to define instantaneous forces on isolated domains,
while sect. 7 deals with forces on domains with interfaces. The remaining sections apply
these notions to media that sustain electromagnetic stresses, with emphasis in sect. 11
on homogeneous, magnetoelectric material. In sects. 12-14, an explicit calculation of the
average pressure exerted by a monochromatic, electromagnetic wave on a homogeneous,
magnetoelectric slab in vacuo is presented and the discussion in sect. 15 summarises how
this pressure depends on the parameters of the magnetoelectric tensors for the medium.

2. — Notation

The formulation below exploits the geometric language of exterior differential forms
and vector fields on a manifold M [11]. Such a language is ideally suited to accommodate
local changes of coordinates that can be used to simplify the description of boundary value
problems and naturally encapsulates intrinsic global properties of domains with different
physical properties. It also makes available the powerful exterior calculus that facilitates
the integration of forms over domains described as the images of chain maps and permits
a clear formulation of notions such as energy, momentum, angular momentum, force and
torque, by fundamentally relating them to isometries of spacetime. In this framework, a
p-form « belongs to SAP M, the space of sections of the bundle of exterior p-forms over M,
while vector fields X belong to ST'M, the space of sections of the tangent bundle over M.
On a manifold with metric tensor g, we denote g(X,—) by X € SA'M and conversely

set X = X for all X. In the following, a notational distinction between smooth (C>)
forms on some regular domain and those with possible singularities or discontinuities
is useful. Smooth forms with compact support on spacetime will be referred to as test
forms [12] and distinguished below by a superposed hat. Manifolds with dimension
n will be assumed orientable and endowed with a preferred n-form induced from the
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metric tensor field g. One then has [11] the linear Hodge operator x that maps p-forms
to (n — p)-forms on M. If g has signature t,, one may write

(2.1) g=> ¢ e n;,
=1

where 7;; = diag(+1,£1,... £ 1) and
(2.2) xl=e' N2 AL Aem,

with ¢, = det(n;;) and {e'} a set of basis 1-forms in SA'M. The natural dual basis
{Xi} is defined so that e’(X;) = &} and the contraction operator with respect to X is
denoted ix. Covariant differentiation is performed with respect to the metric compatible
Levi-Civita connection V, whilst Lie differentiation is denoted L.

3. — Isometries and drive forms

The notion of a drive form arises from the theory of gravitation in spacetimes M with
isometries. In Einstein’s theory of gravitation, the metric g of spacetime is determined
by the tensor field equation

Ein="T,

where Ein € ST?>M denotes the degree 2 symmetric divergence-free Einstein tensor field.
Hence 7 must be a symmetric divergence-free degree 2 tensor field:

V-T=0.

The tensor 7 is regarded as a source of gravitational curvature(!). If K is a Killing
vector field generating a spacetime symmetry and x is the Lorentzian Hodge operator
associated with g, then by definition

EKQZO

and it follows that the drive 3-form

is closed on some domain I; of M:

dTKZO.

If the spacetime admits a set of Killing vector fields { K; € ST I}, one has a conservation
law for each K; in every regular spacetime domain I; [11,13]. These may be supplemented
with (tensor or spinor) field equations

&l (g,@ij) =0,

(*) The tensor T has dimensions of [M LT ~?] (force) constructed from the SI dimensions [M],
[L], [T], [Q], where [Q] has the unit of the Coulomb in the MKS system.
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for all piecewise smooth (tensor or spinor) fields ®L that interact with each other and
gravity. These field equations may induce compatibility conditions and further (non-
Killing) conservation laws

dJgh(@l)y=0

(e.g., electric charge-current conservation). In phenomenological models, some of the
field equations may be replaced by fixed background fields and source currents, together
with consistent constitutive relations between these fields and currents.

An observer field is associated with an arbitrary wunit future-pointing timelike
4-velocity vector field U € STM. The field U may be used to describe an observer
frame on spacetime and its integral curves model idealized observers. The drive form 75
associated with any K admits a unique orthogonal decomposition with respect to any
observer frame U:

TK:J%/\6+PIU(,

where the spatial forms p% € SA3M and JY € SA’M satisfy iyp% = iy Jg = 0. In a
local region, the conservation law d 7 = 0 implies, in terms of the K-current JY, the
continuity relation in the frame U:

dJ%+£UTK:0.

If K is a spacelike translational Killing vector field and U a unit time-like (future-
pointing) 4-vector observer field(?), then

J% = —iUTK

is the linear momentum current (stress) 2-form in the frame U and

is the associated linear momentum density 3-form in the frame U. If K is a spacelike
rotational Killing vector field generating SO(3) group isometries, then J¥ is an angular-
momentum current (torque stress) 2-form and pY. is the associated angular-momentum
density 3-form in the frame U. If K is a timelike translational Killing vector field, then J¥
is an energy current (power) 2-form and pY. is the associated energy density 3-form in the
frame U. In the following, attention is restricted to translational spacelike Killing vectors
of flat spacetime and the computation of integrals of JY for a particular contribution
to 7x associated with electromagnetic fields in homogeneous but anisotropic media of a
particular kind. It will be argued that this formulation leads to a natural definition of
integrated static forces in media with discontinuous material behavior and highlights the
need for care in giving a practical definition of integrated force in media in the presence
of time-varying fields.

(2) The frame is inertial if VU = 0.
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4. — Distributional drive forms

To accommodate media with singular time-dependent sources of stress (e.g, at surface
interfaces or lines in space), introduce the distributional Killing 3-form 75 on spacetime
and its distributional source Ky satisfying the distributional equation

(4.1) dr P8 = Kk (8],

for all test 4-forms 3 [12] on spacetime. Consider a compact medium at time ¢, with
spatial volume determined by the image of the spacelike ¢-parameterised immersion ¥3; :
W3 C R® — M, evolving for a finite interval of time. Denote its immersed history in
spacetime by the region I7. Let I be a compact region of spacetime outside this medium
history. It follows from (4.1) that if 75t is the regular drive form in region I; and 752
is the regular drive form in region I5, then

(4.2) drg™ =0 in I,
(4.3) drg™> =0 in I
(4.4) and 3,7 (rx" — 72 + KK) =0,

at an evolving interface defined by the timelike, t-parameterised immersion 33 : Sy C
R3 — M between I; and I, with a smooth interface drive form Kg on its image. The
history of these images in spacetime is indicated schematically in fig. 1.

5. — Equation of motion for a smooth domain

The notion of force (and torque) is implicit in the balance laws of classical New-
tonian continuum mechanics. In the presence of time-varying fields, it is natural to
associate energy, momentum and angular momentum with such fields in order to main-
tain the conservation of these quantities for closed systems. The only sensible approach
to defining force (and torque) density in such circumstances, where the balance law arises
from the divergence of a total drive form for the system, is with respect to a particular
splitting of this divergence. For systems without mechanical constraint, one assigns a
smooth 4-velocity V' (and angular velocity) field to each smooth domain to describe the
motion. The jumps in these fields at interfaces between domains must be computed
from (4.2)—(4.4) above. The 4-acceleration field A of each domain (and possibly its rate
of change) will appear in one or more components of the split and the remaining terms in
the divergence are often identified with total force (or torque) densities for the domain.
However, unless one prescribes how to practically identify component contributions to
the total force (for example by cancelling some of them by externally applied mechanical
constraints), there is no natural way to identify a canonical split of the divergence of the
total drive form. In those situations where the interaction of matter and fields is station-
ary or static, one can appeal to static experiments with non-moving media to try and
give an unambiguous definition to material body forces. For electromagnetic interactions
with polarisable media, comparison with experiment is difficult, since the choice of drive
form is very model dependent for many materials. However modern technology—with
the refined experimental procedures now available—offers the possibility that the appro-
priate constitutive relation for certain types of matter can be determined experimentally
over an extended parameter range [10].
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Fig. 1. — The partition of spacetime M by the history of a compact medium (with boundary
23, U3, UTY), evolving with 4-velocity V. The timelike vector field U defines a frame, N is
a unit, spacelike vector field and K is a Killing vector field.

To illustrate these general remarks, consider an uncharged (unbounded) medium con-
taining a fixed number of constituents, with number density " € SA°M and mass density
p =moN, mg > 0, in Minkowski spacetime with mass conservation d (px V') = 0. Write

. g

where V' is the (future-pointing) unit, time-like 4-velocity field of the medium and K a
Killing vector field. For a simple medium with a smooth mass density, suppose

" = co” pg(V, K) x v,
with ¢g the speed of light in vacuo, then
dtr =0
yields the local equation of motion [11] for the field V:
Co ? PAV(K) = Ik,

where fr = xd 789 and the 4-acceleration 1-form A=VyV. IEVV = 0, then A=0
and the motion of the medium is geodesic. The medium is then static in the frame where
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U = V. Contracting the local equation of motion
o2 pA(K) %1+ drgfed =0
with the observer field U and integrating over the volume X3; yields
prechU [th] - [23” ’

where

PehU (93] = / prA(K).
$3,
Here the mass 3-form

bu = —Co2ﬂ*ﬁ

and the total instantaneous integrated K-drive component on X3; at time ¢ in the U
frame is

fg [Egt] E/ iU dTKﬁeld.

3,
6. — The general integrated force form on a regular domain [; C M

In Minkowski spacetime, one has a global basis of parallel unit space-like translational
Killing vector fields (K7, K, K3) on ¥3;. In local Cartesian coordinates {t,z,y, 2}, with
g=—coldt@dt+dr@dr+dy®dy +dz ® dz:

0 7] 0

K= —
1 81"

One can then define the instantaneous integrated force 1-form on X3, at time ¢ in the U
frame to be

(6.1) IS = Zf;%. (2% K;.

Then, if N is any unit space-like vector field on ¥3;, the instantaneous integrated force
component in the direction N acting on 3, is

3
(6:2) FOISH () = D20 [ K (V).

In an arbitrary (possibly non-inertial) frame U and domain I; C M

iUdTKﬁeld I; _ dO’KU field I + EUTKﬁeld Ij7
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where

(63) O'KU field I; — —iUTKﬁeld I

is the total Cauchy stress 2-form(®). If one identifies an electromagnetic K-drive 77 "M%

in 750 1 such that

field Ij EMI]' + 7_I(I‘eﬂl Ij

TK =TK

and

U field I; _ U EMI;

K i 4 O'KU rem Ij’

OK

one then has

PII?CChUIj [Egt] +P}]§MUI]' [2315] +P]r(chIj [ESt] — fEM Ul; [2315] _|_f;<cm Ul; [234 ,

where
Plr(em Ul; [EBt] = _ LuTr™e™ Ij’
3y
PEMUL [E‘ﬁ,] - 7/ Ly PN
33

denote integrated rates of change associated with field momenta in 7™ & and 75 PM%

respectively, and
f;g,m Ul; [Z3t] = / dUKU rem Ij’
33,

FEM UL [th] E/ dol BMI
3,

denote integrated forces associated with stresses in 7™ i and 7™, respectively.

7. — The general integrated force form in an irregular static domain composed
of different media

Suppose ¥3; = Zj I; with oxV 4 i the Cauchy stress 2-form for domain I; in

a Minkowski spacetime with frame U = i%. In general, 7gfield

dependent) constraining forces to maintain the overall equilibrium condition

must contain (time

; field
lodr =
#dme =0

from stresses in each sub-domain I; of 3. In the (possibly constrained) static case,

(3) This follows from the Cartan identity: Lx = ixd + dix for any X € STM.
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Lyt = 0 and each 2-form

Z-ngKﬁeld I — g U field I
t

contributes an integrated reaction force on ¥?; from domain I;.

In general, each 4-velocity V% € ST1I ; must be determined from the jump conditions
for 7514 Ii In the static case, one has all VV’ = 0 with Vi = U, and one may define
the net integrated K-force for ¥3; in the frame U:

: field I; U fieldl; U fieldl;

R[] = E / ngTKe T = E , dog " = E / o
- 3 t - 3 - 3
7 /= G Jost,

There may be additional sources of stress with support on submanifolds of M. Singular
sources of stress in the electromagnetic field include charges, currents and their multi-
poles, with support on points, lines ! or surfaces ¥2 in space [7]. If the integrals on
the right below are finite, the most general integrated force can then be written so as to
include such distributional sources:

j : U fieldI; j : U fieldI; j : U fieldI;
fg [ZSt] - / 3 UK J + /2 K/K J + /1 rYK 17
j ‘921j i EIJ_ J EIJ-

in terms of line stress 1-forms vk and surface stress 2-forms Ky .
A number of sources of interfacial stress depend on the local mean curvature normal
of the interface. For example, if the history of the interface 0 I; is the spacetime hyper-

surface f = 0 with unit spacelike normal N = %7 then the scalar (Tr H) is defined
by

diN’iU*l = (Tr H) iU*l
and n = (Tr H) N is the mean curvature normal. Surface tension at an arbitrary interface

depends on 77 and the local surface tension scalar field «, yielding the particular interface
forces:

/ U el :/ (yig 7+ix dvy)iniy *1
£3,=0%%, =

T

U fieldl, S
Vi = YiN iUtk * 1.
pX $l =9%2
J J

1
1

8. — Electromagnetic fields in spacetime

Maxwell’s equations for an electromagnetic field in an arbitrary medium can be writ-
ten as

(8.1) dF =0 and dxG=1j,



214 R. W. TUCKER and T. J. WALTON

where F' € SA2M is the Maxwell 2-form, G € SA%?M is the excitation 2-form and
j € SA®M is the 3-form electric current source(*). To close this system, “electromag-
netic constitutive relations” relating G and j to F' are necessary. The functional tensor
relations

G = Z|F)
and
Jj = Z1[F]

are typical for idealized material without electrostriction losses.

The electric 4-current j describes both (mobile) electric charge and effective (Ohmic)
currents in a conducting medium. The electric field e € SA*M and magnetic induction
field b € SA*M associated with F are defined with respect to an observer field U by
(82) e = iUF and Cob: iU*F.

Thus, iye = iyb = 0 and with g(U,U) = —1,
(8.3) F:eAﬁ—*(cob/\Ff).

Likewise the displacement field d € SA'M and the magnetic field h € SA' M associated
with G are defined with respect to U by

(8.4) d=iyG and L0 =iy *xG.
co
Thus,
- h ~
(8.5) G—d/\U—*<c/\U),
0

with iyd = iyh = 0. The spatial 1-forms e, b, d, h are fields on a general spacetime
defined with respect to the frame U, which may be non-inertial if dU # 0.

9. — Time-dependent Maxwell systems in space

In the following, attention is restricted to fields on Minkowski spacetime. This can
be globally foliated by 3-dimensional spacelike hyperplanes. The Minkowski metric on
spacetime induces a metric with Euclidean signature on each spacetime hyperplane. Fur-
thermore, each hyperplane contains events that are deemed simultaneous with respect
to a clock attached to any integral curve of a future-pointing, unit, time-like vector field

(*) All electromagnetic tensors in this article have dimensions constructed from the SI dimen-
sions [M], [L], [T], [Q] where [Q] has the unit of the Coulomb in the MKS system. We adopt
9] = [L7], [G] = [j] = [Q], [F] = [Q]/[eo] where the permittivity of free space ey has the di-

mensions [Q2 T2M~* L73} and co = \/ﬁ denotes the speed of light in vacuo. Note that, with

[9] = [L?], for p-forms « in n dimensions one has [xa] = [a][L™ 7]
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= %% defining an inertial observer on Minkowski spacetime and the spacetime Hodge
0

map * induces a Euclidean Hodge map # on each hyperplane by the relation
s =codt N#1=H#1AT.

The spacetime Maxwell system can now be reduced to a family of parameterised exterior
systems on R3. Each member is an exterior system involving forms on R3 depending
parametrically on some time coordinate ¢ associated with U. Let the (3 + 1) split of the
4-current 3-form with respect to the foliation be

7 =—J ANdt+ p#1,

with i 5 J = 0. Then, from (8.1),

(9.1) dj=0
yields
(9.2) dJ + p#1 = 0.

Here, and below, an over-dot denotes (Lie) differentiation with respect to the parameter
t(a=L 2 for all ) and d denotes exterior differentiation on R? such that

d=d+dtAL

2
ot

It is convenient to introduce on each spacetime hyperplane the (Euclidean Hodge) dual
forms:

E = #e, D = +#d
B = #b, H = #h, J=#dJ,

so that the (34 1) split of the spacetime covariant Maxwell equations (8.1) with respect
to U = —co dt becomes

(9.3) de = —B,
(9.4) dB =0,
(9.5) dh=J+ D,
(9.6) dD = p#1

All p-forms (p > 0) in these equations are independent of dt, but have components that
may depend parametrically on .
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10. — Electromagnetic constitutive tensors for linear media

Attention will now be turned to integrated electromagnetic forces on a class of polar-
isable media. This requires a discussion of a class of electromagnetic constitutive tensors
for linear media. In general, the excitation tensor G is a functional of the Maxwell field
tensor F' and properties of the medium

G =Z[F,...].

Such a functional induces, in general, non-linear and non-local relations between d, h
and e, b. Electrostriction and magnetostriction arise from the dependence of Z on the
elastic deformation tensor of the medium. For general linear continua, one may define a
collection of constitutive tensor fields Z(™) on spacetime by the relation

G=xN,zZMV"E,..],

in terms of the spacetime connection (covariant derivative) V.
In idealized (non-dispersive) simple media, one adopts the simplified local relation

G =Z(F),

for some degree 4 constitutive tensor field Z and in the vacuum G = €yF. Regular
linear isotropic media are described by a bulk 4-velocity field V', a relative permittivity
scalar field €, and a non-vanishing relative permeability scalar field p,. In this case, the
structure of Z follows from

G . . 1 _ 1
—:erivF/\V—,u:l*(iV*F/\V) - <er—) ivF AV +—F.
€0 Hor Hor

In a comoving frame with U = V, this becomes

d = ege, e and h = (pop, )~ 'b.
To discuss linear (non-dispersive, lossless), inhomogeneous, anisotropic media, it is con-
venient to describe Z in a particular basis associated with the medium. Since Z is a

tensor that maps 2-forms to 2-forms, in any spacetime local frame {e°, e', e?, e}, one
may write

1 1
§Gab€a Aebl = ZZCdachde“ Aeb,
where
ZCdab = _ZCdba = _chab = chba-

Thus, Z can be described in terms of spatial rank 3 tensors on spacetime, relating
observed electric and magnetic fields in some frame U, with

d=("(e)+¢"(b),
h=¢"(e) + (" (b).
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In such a frame, the medium is said to exhibit magneto-electric properties in general.
If ¢% and ("¢ are non-zero in the co-moving frame of the medium, it is called mag-
netoelectric. If (% and ("¢ are zero in the co-moving frame of the medium, it is called
non-magnetoelectric. The spatial tensors (% and ¢"¢ may be non-zero in a non-comoving
frame for a non-magnetoelectric medium. Due to the behaviour of electric and magnetic
fields under Lorentz transformations, all materials exhibit magnetoelectric properties
in some frame. Thermodynamic and time symmetry conditions impose the relation
Z = 71 [14] or

Cdef — (de, ChbT — (" and Cde — _(he

in all spacetime frames, where the adjoint 7' of a tensor 7" which maps p-forms to p-forms
is defined by

aAxT(B) = BA+TT(a) for all o, 3 € SAP M.

11. — Homogeneous dispersive magnetoelectric media

In dispersive media, constitutive relations between the spatial fields e, b, d, h are non-
local in spacetime. If the medium is spatially homogenous, so that it has no preferred
spatial origin, then it is possible to Fourier transform the fields with respect to space and
time, and work with transformed local constitutive relations.

For any real valued p-form «, define its complex valued Fourier transform éy ., by

(11.1) a= / dw/ dk Gy expli(k - r — wt)],

where k € R?. Then the source free Maxwell system reduces to

(11.2) K Né,, =wBy,,
(11.3) K Ahy,, =-wDy,,

where the real propagation wave 1-form K = k-dr € SA'M. The remaining transformed
Maxwell equations KAB,, , = 0and KAD,, , = 0 follow trivially from (11.2) and (11.3)

when w # 0. It also follows trivially that &, , A Bk,w =0 (ie. €j,. 18 perpendicular to
by,.,)- Similarly, B, A K =0and D, A K =0.
We assume that the magnetoelectric constitutive relations take the form

(114) dk,w = vlg,ew(ék,u) + ég?w(vk,wL
(115) hk,w = I}cL,ew( Vk,w) + leclbw< k,w)'
These will (by convolution) give rise to non-local spacetime constitutive relations. We

also maintain the above symmetry properties on the magnetoelectric tensors é,‘iew, ngw,

Che | ENb - Substituting (11.4) and (11.5) in (11.2) and (11.3) yields a degenerate 1-form

k,w’ Sk,w*
linear eigen-equation for €k

(11.6) w2é;§,%(ék,w) + uJCV,‘if’w (# (K Néy,)) +w# (KA éll‘:l,ew(ék,w))
+# (KNG, (# (K Néy,,))) =0.
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The field lv)k,w then follows from (11.2), (up to a scaling) and dk,W lvz,%w from (11.4), (11.5),
respectively. Equation (11.6) may be written as

(117) ’i)k,w(ék,w) = 07

defining the 1 — 1 tensor ’Dk,w. For non-trivial solutions €, ,, the determinant of the
matrix ﬁk,w representing ’lv)kw must vanish:

(11.8) det(Dg,.,) = 0.

Note that, in general, the roots of this dispersion relation are not invariant under the
transformation K — —K. If one writes k = k|k| in terms of the Euclidean norm |k,
and introduces the refractive index N" = [k[> > 0 and k in place of k, then solutions

propagating in the direction described by k with angular frequency w > 0 correspond
to roots of (11.8) (labelled 7) that may be expressed in the form N, = F,.(k,w). Thus,
there can be a set of distinct characteristic waves each with its unique refractive index
that depends on the propagation direction k and frequency w. When the characteristic
equation (11.8) is a quadratic polynomial in A and has two distinct roots that describe
two distinct propagating modes for a given w, the medium is termed birefringent. Roots
N?Z such that N,.(k,w) # N, (—k,w) imply that harmonic plane waves propagating in
the opposite directions +k have different wave speeds.

Each eigen-wave will have a uniquely defined polarisation obtained by solving the
independent equations in (11.7) for €}, , up to normalisation. Since €, , is complex, it
is convenient to introduce the eigen-wave normalisation by writing

_x~r ~r
ek,w - ek,w nk,wv

in terms of the complex 0-form €k and complex polarisation 1-form ny, ,» normalised
to satisfy

(11.9) T ARG, = #1

for each r. If one applies # €}, A # to (11.6), making use of the symmetries between the

real magnetoelectric tensors C,‘jew, C,‘ibw, C,’;ew, ,wa, and evaluates it with the eigen-wave

€J, ., one obtains the real O-form dispersion relation for the characteristic mode r:

W (m A #égfw(ﬁ;w)) Fw# (m N#CR, (# (K A nz,w)))

ot (R NE NG (7)) + # (R A KA G, (# (K Ak ) ) =0,
where K = %le: -dr in terms of N and k.

12. — Electromagnetic stress-energy-momentum tensors

There has been intense debate over many decades about the appropriate choice of
electromagnetic stress-energy-momentum tensor that transmits forces in a (moving) po-
larisable medium [15]. In 1909, Abraham introduced the symmetric electromagnetic
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stress-energy-momentum tensor 7*M for a medium with 4-velocity V:
2T = i F®iG —i,G®i"F —x(FA*G)g+V @s+s0V,

where i, = ix,, i% = ¢g*% i, in any vector basis {X,} and

1 ~ ~
s*(ev/\hv/\VCOdV/\bv/\V>,
co

. . . RV
where e” =iyF, cobY =iy« F, dV =iyG and — =iy x G,
co

are fields defined relative to the motion of the medium, so that
F:ev/\‘f?—* (C()bV/\‘A;')7

_ v
G=d" ANV —x (h/\v>
Co

with

G = Z(F).

For any Killing field K the drive form associated with Abraham’s electromagnetic stress-
energy-momentum tensor is

1 -~
(12.1) TEM:5(F/\z'K*G—iKG/\*F+s(K)*V+V(K)*s).
It follows from (6.3), (8.3) and (8.5) that

(12.2) JY¥=o¥

% (e(K)#d + d(K)#e + h(K)#b + b(K)#h)

—%#(EA#d—Fb/\#h)#IN{Jr%(N](K) <Cle/\h+cod/\b>
0

1 - -
+5iv (K Ady * s) V(K )iy * s

and

1~ 1/1 ~
(12.3) p%:_2U(K)(b/\#the/\#d)+2(CeAthcod/\b>/\Kl
0
L= = . = . ~
—izU(K/\U/\Zv*s)—l—V(K)zU(*s/\U),
where K+ = K + U(K)U.

By contrast, Minkowski (1908) introduced the non-symmetric electromagnetic stress-
energy-momentum tensor TEM where

(12.4) TEM =, F ®i°G — % * (FAxQ)g,
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which exhibits no explicit dependence on the medium 4-velocity V. The corresponding
drive form is

1
TEMzi(F/\iK*G—iKF/\*G)

and (6.3), (8.3) and (8.5) yield in this case

(12.5) JY =0 = h(K)#b+ e(K)#d + %ﬁ([()e Ah
—g# (e AHdLbAH#R) #R

and

(12.6) p%:cod/\b/\f(l—%ﬁ(K)(e/\#cH—b/\#h).

More recently other choices for an electromagnetic stress-energy-momentum tensor
have been proposed which in themselves simply imply different constitutive relations [16]
with respect to a particular total stress-energy-momentum tensor. In [17,18], it has been
argued that different choices of the electromagnetic stress-energy-momentum tensor for
linear polarisable media are equivalent to different choices of Z and a different partition of
the total stress-energy-momentum tensor for the computation of so-called pondermotive
forces that arise from the divergence of terms in its decomposition. Furthermore, it was
shown how particular choices of the dependence of Z on the gravitational interaction led,
via a covariant variational formulation, to either the Abraham tensor or a symmetrized
version of that proposed by Minkowski.

In the following, we illustrate how the general theory of drive forms outlined above
offers a natural tool to discuss the computation of particular electromagnetic forces for
materials that exhibit magnetoelectric properties (at rest) in the laboratory, for a par-
ticular choice of electromagnetic drive form. This is an essential step in any program
that attempts to confront experimental measurements of such forces with theoretical
prediction.

To facilitate this calculation, an electromagnetic drive form associated with the tensor
obtained by symmetrizing (12.4) will be chosen:

1
(12.7) M = 5(FAz‘K*G—z‘KGA*F).
It follows from (6.3), (8.3) and (8.5) that with this drive-form

(12.8)  JY =0% = = (e(K)#d + d(K)#e + h(K)#b + b(K)#h)

DO | =

—%#(e/\#der/\#h)#f(Jr%ﬁ(K) (CleAmcodAb)
0

and

(12.9)

s
xS
I

DO =

1 ~ 1=
(CeAthcodAb)/\Kl2U(K)(e/\#d+b/\#h).
0



AN INTRINSIC APPROACH TO FORCES IN MAGNETOELECTRIC MEDIA 221

For a medium at rest in the laboratory, U = V = %Bt. Furthermore, if (NJ(K) =0,
the 2-forms (12.2) and (12.8) coincide, so the following analysis does not discriminate
between the choice of tensors (12.1) and (12.7). However, in this case the instantaneous
densities (12.3) and (12.9) are different. But, for the polarised monochromatic plane
waves discussed below, the time-averaged tensors based on (12.6) and (12.9) also coincide.

If the fields are all differentiable in the medium described by (12.7), one readily obtains

1
drM = 5(inG/\*F—i—iKG/\d*F—F/\in*G)

II II 11
=FAxigd|—=—)|—|F+|— Nigi+GNigdx | — |,
2 260 260

where
dF =0, d*xG =1}, G =¢F +11, egd xF =j7—d«IL

Thus, non-zero bulk integrated static electromagnetic forces from such fields require
dIl # 0, d xII # 0 (magnetisation or electrical polarisation inhomogeneities) or j # 0
(non-zero local source current or charge density). For a neutral homogeneous material
therefore, we consider a medium whose electromagnetic properties change discontinuously
at some interface.

13. — The magnetoelectric slab

In terms of the rank 3 identity tensor Id in space, consider an infinitely extended
slab(®) of magnetoelectric material with

(13.1) e, = €rw 1d,
(13.2) s = Hpe, 1d.

The slab has width L and parallel interfaces (with the vacuum) at x = 0 and x = L. It
is oriented in the laboratory frame {0,,0,, 0.}, so that Cgf’w takes the particular form

(13.3) G = Brkew dz @ Oy + Ba g dy @ 0.,

In this frame, the modes associated with the branch (13.6) of the dispersion relation
below will be polarised in the direction 0, and those associated with the branch (13.7)

will be polarised in the direction d,. The matrix representing é,;lbw takes the form

0 0
0 ﬂl,k,w
k

0
(13.4) (G = |0
0 62, ,w 0

(®) Such a medium has been considered by Hehl and Obukhov in their classical analysis of the
Feigel effect [19].
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% db
€0, 1o €kws Hhkws Sl €0, 1o
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— >
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_ >

: Reflected, EE}Y
Reflected, EE;Y -—
%

I IT 11

rx=0 =1L

Fig. 2. — Geometry of the magnetoelectric slab and the electric field amplitudes in the three
regions.

It follows that
(135) vl}cL,ew = _62,k,w dz ® 6y - ﬁl,k,w dil/ ® az

With this choice of orientation of the slab, the spatial region 0 < x < L will be denoted
IT and the region with 2 > L denoted IIT (see fig. 2). The electromagnetic fields induced
in its interior by a plane monochromatic wave normally incident from the right (in region
I, < 0) propagating in the direction 0, with polarisation in the direction 9, can now
be readily determined.

From (11.8), the dispersion relation associated with one polarised eigen-mode of €, ,
is

(13.6) e wlieww® — k% — 21 g whw = 0,

while that associated with the other polarised eigen-mode of &, , is

(13.7) Ehowhleww” — k? + 202 wkw = 0.

Each relation can describe propagating modes with angular frequency w > 0 moving in
a direction determined by sign(k) 9, with phase speed |w/k|. Since this ratio depends
on the values of 31 k. Or B2 ko, it may exceed the speed of light in vacuo. In principle,
such modes can contribute to the synthesis of wave packets. However, in the following,
we restrict to monochromatic incident waves and work with constitutive parameters that
inhibit super-luminal waves, with real constants eg ., =€ > 0, g, = p > 0, f1 k0w = 51,
B2,kw = P2. For an incident wave with complex amplitude &£, no loss of generality arises
by taking w > 0 and writing the solution €&, :

(13.8) é;f’fw =& (exp [zkz%m — iw t} dy + EILy exp [zkILyx —iw t} dy) ,
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Iy ITy ., Iy . Ty . Iy .
(13.9) €, w=Fc (ER exp [sz T —iw t] dy + E; 7 exp [sz T — iw t] dy) ,

(13.10) &y = EER" exp [a — iwt] dy

where kgy denotes a real root of the dispersion relation (13.7) associated with the po-
larisation eigenvector 0, with sign(kgy) > 0, describing a polarised right-moving wave
in the slab (region II). Similarly, kny denotes a real root of the dispersion relation as-

sociated with the polarisation eigenvector 0, with blgn(k ¥) < 0, describing a polarised
left-moving wave in the slab (region II). In general these wave numbers are different. In
. Iy Iy Iy
the vacuum regions, ky = —k;’ =k’ =w/co.
If QF (©3) denotes the pull-back of forms to the interface x = 0 (z = L), the interface
boundary conditions [20] are

03 (D, - DII7) = 3 (DIl — DY) =0,

yielding the linear system for the dimensionless complex amplitudes EILy, Egy, EILIy,

111
Eg Y.
1+ EY = gllv 4 pllv,
kIIy 11 kHy i ) 1 .
7—ﬁ v 7—ﬁ yzi(kﬁy—l—Eyky),
( pew pw Low R L "L
k‘IIy kIIy kHIyEIIIy
o 2| Br e [ik%yL} + (=t =By | ELYexp {%kgyL} =B TR ovp [ikegL] :
Hw 11w o /
This system of equations has the solution
Y
Eiy == 9
7
Elv _ a (kILy ~ ky ) (/WOBW + kg — Mokgy) exp [ikzgyL}
L = Fy ’
13.15
( ) Iy o (k%’ — kly) ( 102w + kIH U0k2y> exp [’Lk‘ILIyL}
ER p— Fy ’
+
! ! 1T 11 11 11
90 (= 28) () )

R - Y ’
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Fig. 3. — Geometry of the 2-chain 2 used to calculate the time-averaged integrated pressure on
the magnetoelectric slab.

where it is convenient to introduce
02 = (oo [152] - exp 9] [ (s + K)
+ppBaw (ﬂz#w — k¥ - kILIy> + o (ﬂzqukeg + uokgykgy)]
+ (kgy exp {zkILh’L} — K exp [ikﬁyLD T
+ (kIL“’ exp [zkEyL} — k:ILIy exp [zk‘ILI‘I’LD ,u,uokf
with

Y =EY  and Y =k

With the electric field amplitudes determined, the complete set of polarised fields
{er by . dy kY ) in each region is determined. For completeness, these fields are
given in the Appendix.

14. — Average pressure on the magnetoelectric slab

To calculate the average pressure on the sides of the magnetoelectric slab, one inte-
grates the Maxwell-Cauchy stress 2-form over the 2-chain (surface) Q = Qo+Q1+Qr+Q5
indicated schematically in fig. 3. The image of € is the boundary of a box of height H,
width W and length L, with faces 2y and y in regions I and III respectively, parallel
to the surfaces of the slab. Integrating over a box with faces wholly within II would give
zero total force, since region II is homogeneous. Since the fields are independent of z,
contributions to the integral from the oriented chains €2, and 29 cancel.
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The above fields yield a net pressure on II that fluctuates with time, with a non-zero
average. If A(r,t) is a scalar field, its average over any time interval 7' is

T
(r) = %/O A(r,t)dt

Hence, if B(r,t) is another scalar field,

T
(AB)(r) = %/0 A(r,t)B(r, t)dt.

Furthermore, if

A = Re (A(r) exp[—iwt]) € SAP M,
B = Re (B(r) exp[—iwt]) € SAYM,

where A, B are complex, then
AANB = % Re (A A Bexp|—2iwt]) + % Re(AA B),

=)

(14.1) (AN B)(r)= %Re(A/\B),

if we take T' = 2Z. Thus, (12.8) gives

—7# Re ( Lo AL+ B AR #E
1 2o - e
4 (éllc/w A hlg,w + Co dlg,w A b;:,w) :
Furthermore, with U = Ci(“)t and K = 0., the z-component of the time-averaged

Maxwell-Cauchy stress 2-form is

(00,)(r) = 1 Re (&0, (0)#dY, +dY (0 #e],

which reduces to

(14.2) (00,)(r) = —;#Re (&L, A#dL, + b, AR ) dy A dz,
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The time-averaged integrated force is given by(°)

(e = [ (ahy— [ (aln.

Qo Qr

Denote the time-averaged stress forms due to the fields in regions I and III by

<Uém>=a1dy/\dz, aI:—l#Re<ekw/\#dIy —|—ny /\#hly>

<U(191zl> — dy A dz, A — _7#Re (einy A #dIIIy IIIy A #hIIIy)

Thus, the time-averaged net force on the magnetoelectric medium contained in the region
bounded by €2 is

W rH
(FoET9]) = (" — Q1) / / dydz = (Qpa’ — Q7 a') 4,
0 0

NET
M. Calculat-

where A = WH and the time-average integrated pressure (p,[Q]) =
(2

ing the pull-backs of
ot =L [ (v 2me (e s e -2 ]) + )

+M01w2 ((kﬁ')z + 2K ¢k} Re (B} exp [i [KY — kY| 2] ) + (k)2 ’EIL-”‘Z)] :

2 2
Iy 11y

Q1 — ’(SER ’ €0 + <kR >
4 Low?

yields
52 2 Go‘gEIHy‘z
€ R
Ojat =55 (14 [m2[). opam - -2
since k‘gj = —kILy = k‘gly = % Since the time-averaged body force (Lyp¥.) = 0 for p¥-

given by (12.3), (12.6) and (12.9), it follows that the average pressure on the magneto-
electric slab is given in terms of the solution (13.15) by
2
- 1) |

(5) The minus sign occurs due to the opposite orientation of the opposite faces of Q.
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15. — Conclusion

The magnitude and sign of (p,[2]) depends on € = €,€q, t = prpo, $1 and B2, where
\/6(1)%. As noted above, the wave numbers kILIy, kgy that follow from the dispersion

relation determine the nature of the propagating wave in region II. For the case under
discussion here, where the parameters €,., -, 81, 2 are constant, it is of interest to write

the dispersion relations in terms of the dimensionless ratio of the wave speeds w = %,
where v = Z, vo = \/%Tt and the dimensionless parameters by = — 1/ \/en, ba = [a/ /€

Co =

w? + 2w —1 =0,
w? 4+ 2byw — 1 = 0.

Then the sub-luminal condition |- < 1 implies |w| < \/&-p;. The relation between w
and either b; and by can then be seen from the relation of the two branches of the loci
where the expression w? + 2bw — 1 vanishes in the (w, b)-plane. For w > 0, values of w
in the upper (lower) half plane correspond to left (right) moving waves. Furthermore,
propagating sub-luminal monochromatic waves will only occur in II for real b, yielding
real values of w in the range —,/€, 1, < w < /€, p,. It is clear from these considerations
that the relative sign between (3; and (2 can have a significant effect on the behavior
of the propagating modes in the region II and hence on the nature of the force on the
magnetoelectric slab.

The authors feel that the approach adopted in this paper for the calculation of static,
time-averaged and instantaneous forces, offers a conceptually unambiguous method of
considerable generality. Once one decides on the drive form appropriate for any subsys-
tem in interaction with external fields, it has immediate application to moving media
(in arbitrary relativistic or non-relativistic motion) and can be extended to matter with
material losses. Work is in progress to extend the methodology to inhomogeneous media
with more general constitutive properties and this will be reported elsewhere.
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APPENDIX

Electromagnetic fields in the three regions

For a y-polarised harmonic electromagnetic wave with angular frequency w > 0,
incident normally from the left on a fixed magnetoelectric slab, the electric field solutions
in the three regions are given by (13.8)—(13.10). For completeness, the remaining fields
in these three regions are given here. The magnetic induction fields follow from (11.2):

ST EkY ) LY Ely '

bLf’w = —E exp [zk}é’x — iw t} dz + —LE—L exp [zk;ILyx — iw t} dz,

. & v plly Sy

bV = TR R oxp [zk%”x —dw t} dz + —L—Lexp {ZkILIyx —iw t] dz,
’ w w

3 £ 1y pllly

b}cnwy =8 "R ep {ik%ly:c —jw t] dz.
: w
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The electric displacement 1-forms in regions I and III are given by the vacuum constitutive
relation d;/ | = ep€;/ , whereas the electric displacement 1-form in region II is given by

the constitutive relation (11.4), with the spatial tensors é,‘jfw and égf’w given by (13.1)
and (13.3), respectively:

d}fw = Eegexp [zk%’oj —iw t} dy+ & eoEILy exp [zkILyx —iw t} dy,

dlv _ ¢ ﬂQk%y Iy 1Ty .
o = €+ " Er7 exp [zk‘R x—zwt} dy

BokpV \ 11,
+&€ e+ —L | B Vexp {ikLyx - iwt} dy
w
d}cnwy =& eOEeg exp [ikglyx —fw t} dy.
Similarly, the magnetic 1-forms in the regions I and III are given by the vacuum con-
stitutive relation h) = pg 1b£ »» Whereas in region II, the magnetoelectric constitutive

relation (11.5), with the spatial tensors ¢%, and ¢}, given by (13.2) and (13.5) respec-
tively yield

R, = R o ke — iot] a4 ERLEL ik —iwt| d
ko = exp |1kp T — 1w z—i—luOTeszLx—zw z,

. kHy
hgg =& ( A ﬂz) Egy exp [Zkgyz —w t} dz

w o

kIIy
+& (L _ ﬂ2> Egy exp [zk‘ILIyx — 1w t} dz,
Hw
B £ kIIIyEIIIy
Ry = 20k TR oy [ik%lyxfiwt] dz.
’ Mow
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