3,211 research outputs found

    One, two, or three stars? An investigation of an unusual eclipsing binary candidate undergoing dramatic period changes

    Get PDF
    We report our investigation of 1SWASP J234401.81-212229.1, a variable with a 18 461.6 s period. After identification in a 2011 search of the SuperWASP archive for main-sequence eclipsing binary candidates near the distribution's short-period limit of ~0.20 d, it was measured to be undergoing rapid period decrease in our earlier work, though later observations supported a cyclic variation in period length. Spectroscopic data obtained in 2012 with the Southern African Large Telescope did not, however, support the interpretation of the object as a normal eclipsing binary. Here, we consider three possible explanations consistent with the data: a single-star oblique rotator model in which variability results from stable cool spots on opposite magnetic poles; a two-star model in which the secondary is a brown dwarf; and a three-star model involving a low-mass eclipsing binary in a hierarchical triple system. We conclude that the latter is the most likely model

    EFFECT OF RISK PERSPECTIVE ON FERTILIZER CHOICE BY SHARECROPPERS

    Get PDF
    Peanut and corn are two major crops in the tri-state area of the Southeast US, an area encompassing North Florida, Southwest Georgia, and Southeast Alabama. Sharecroppers in this region apply higher amount of input in crop production than the average farmers. We analyzed the behavior of sharecroppers in this region with regard to their fertilizer application decisions. Two hypotheses were formulated and tested based on sharecroppers' fertilizer application decisions: one assuming that sharecroppers are risk averse farmers and the other assuming that sharecroppers are regret minimizers. Our results show that a sharecropper uses different fertilizer treatments when minimizing risk depending on risk perspective and desired income. Sharecroppers who apply more fertilizer to obtain a desired level of income are regret minimizers where as sharecroppers who apply relatively low fertilizer are risk minimizer. At the same desired level of income, a regret minimizer farmer would apply a higher amount of fertilizer than the risk averse farmers. Our analysis revealed that sharecroppers in the Southeast US are regret minimizers as they apply a higher amount of fertilizer than an average farmer on the major crops grown in the region. The result of this study also confirms the result of a previous study in the region which reported that sharecroppers in the region are over capitalized and apply more fertilizer than average farmers.Southeast U.S., Sharecroppers, Regret minimizer, Risk averse, Peanut-Corn rotation, Farm Management, Risk and Uncertainty,

    Delivery performance of conventional aircraft by terminal-area, time-based air traffic control: A real-time simulation evaluation

    Get PDF
    A description and results are presented of a study to measure the performance and reaction of airline flight crews, in a full workload DC-9 cockpit, flying in a real-time simulation of an air traffic control (ATC) concept called Traffic Intelligence for the Management of Efficient Runway-scheduling (TIMER). Experimental objectives were to verify earlier fast-time TIMER time-delivery precision results and obtain data for the validation or refinement of existing computer models of pilot/airborne performance. Experimental data indicated a runway threshold, interarrival-time-error standard deviation in the range of 10.4 to 14.1 seconds. Other real-time system performance parameters measured include approach speeds, response time to controller turn instructions, bank angles employed, and ATC controller message delivery-time errors

    An updated stellar census of the Quintuplet cluster

    Get PDF
    Context. Found within the central molecular zone, the Quintuplet is one of the most massive young clusters in the Galaxy. As a consequence it offers the prospect of constraining stellar formation and evolution in extreme environments. However, current observations suggest that it comprises a remarkably diverse stellar population that is difficult to reconcile with an instantaneous formation event. Aims. To better understand the nature of the cluster our aim is to improve observational constraints on the constituent stars. Methods. In order to accomplish this goal we present Hubble Space Telescope/NICMOS+WFC3 photometry and Very Large Telescope/SINFONI+KMOS spectroscopy for ∼100 and 71 cluster members, respectively. Results. Spectroscopy of the cluster members reveals the Quintuplet to be far more homogeneous than previously expected. All supergiants are classified as either O7–8 Ia or O9–B0 Ia, with only one object of earlier (O5 I–III) spectral type. These stars form a smooth morphological sequence with a cohort of seven early-B hypergiants and six luminous blue variables and WN9-11h stars, which comprise the richest population of such stars of any stellar aggregate known. In parallel, we identify a smaller population of late-O hypergiants and spectroscopically similar WN8–9ha stars. No further H-free Wolf–Rayet (WR) stars are identified, leaving an unexpectedly extreme ratio of 13:1 for WC/WN stars. A subset of the O9–B0 supergiants are unexpectedly faint, suggesting they are both less massive and older than the greater cluster population. Finally, no main sequence objects were identifiable. Conclusions. Due to uncertainties over which extinction law to apply, it was not possible to quantitatively determine a cluster age via isochrone fitting. Nevertheless, we find an impressive coincidence between the properties of cluster members preceding the H-free WR phase and the evolutionary predictions for a single, non-rotating 60 M⊙ star; in turn this implies an age of ∼3.0–3.6 Myr for the Quintuplet. Neither the late O-hypergiants nor the low luminosity supergiants are predicted by such a path; we suggest that the former either result from rapid rotators or are the products of binary driven mass-stripping, while the latter may be interlopers. The H-free WRs must evolve from stars with an initial mass in excess of 60 M⊙ but it appears difficult to reconcile their observational properties with theoretical expectations. This is important since one would expect the most massive stars within the Quintuplet to be undergoing core-collapse/SNe at this time; since the WRs represent an evolutionary phase directly preceding this event,their physical properties are crucial to understanding both this process and the nature of the resultant relativistic remnant. As such, the Quintuplet provides unique observational constraints on the evolution and death of the most massive stars forming in the local, high metallicity Universe

    Parasite-driven replacement of a sexual by a closely related asexual taxon in nature

    Get PDF
    Asexual species are thought to suffer more from coevolving parasites than related sexuals. Yet a variety of studies do not find the patterns predicted by theory. Here, to shine light on this conundrum, we investigate one such case of an asexual advantage in the presence of parasites. We follow the frequency dynamics of sexual and asexualDaphnia pulexin a natural pond that was initially dominated by sexuals. Coinciding with an epidemic of a microsporidian parasite infecting both sexuals and asexuals, the pond was rapidly taken over by the initially rare asexuals. With experiments comparing multiple sexual and asexual clones from across the local metapopulation, we confirm that asexuals are less susceptible and also suffer less from the parasite once infected. These results are consistent with the parasite-driven, ecological replacement of dominant sexuals by closely related, but more resistant asexuals, ultimately leading to the extinction of the formerly superior sexual competitor. Our study is one of the clearest examples from nature, backed up by experimental verification, showing a parasite-mediated reversal of competition dynamics. The experiments show that, across the metapopulation, asexuals have an advantage in the presence of parasites. In this metapopulation, asexuals are relatively rare, likely due to their recent invasion. While we cannot rule out other reasons for the observed patterns, the results are consistent with a temporary parasite-mediated advantage of asexuals due to the fact that they are rare, which is an underappreciated aspect of the Red Queen Hypothesis.Peer reviewe

    The Arches cluster revisited: II. A massive eclipsing spectroscopic binary in the Arches cluster

    Get PDF
    We have carried out a spectroscopic variability survey of some of the most massive stars in the Arches cluster, using K-band observations obtained with SINFONI on the VLT. One target, F2, exhibits substantial changes in radial velocity; in combination with new KMOS and archival SINFONI spectra, its primary component is found to undergo radial velocity variation with a period of 10.483+/-0.002 d and an amplitude of ~350 km/s-1. A secondary radial velocity curve is also marginally detectable. We reanalyse archival NAOS-CONICA photometric survey data in combination with our radial velocity results to confirm this object as an eclipsing SB2 system, and the first binary identified in the Arches. We model it as consisting of an 82+/-12 M⊙ WN8-9h primary and a 60+/-8 M⊙ O5-6 Ia+ secondary, and as having a slightly eccentric orbit, implying an evolutionary stage prior to strong binary interaction. As one of four X-ray bright Arches sources previously proposed as colliding-wind massive binaries, it may be only the first of several binaries to be discovered in this cluster, presenting potential challenges to recent models for the Arches' age and composition. It also appears to be one of the most massive binaries detected to date; the primary's calculated initial mass of >~120 M⊙ would arguably make this the most massive binary known in the Galaxy

    Thermal relaxation of electron spin motion in a thermal equilibrium ensemble: Relation to paramagnetic nuclear magnetic resonance relaxation

    Full text link
    The electron spin relaxation times measured in ESR spectroscopy are physically distinct from the electron spin relaxation times which appear in the theory of NMR Paramagnetic Relaxation Enhancement (NMR-PRE). ESR involves decay of a perturbed spin density matrix toward thermal equilibrium, while in NMR-PRE measurements, the electron spin density matrix remains at thermal equilibrium throughout the NMR experiment. The pertinent spin relaxation involves the thermal decay of the time correlation functions, Gr(τ) ≡ 〈Sr(0)⋅Sr(τ)〉 (r = x,y,z),Gr(τ)≡〈Sr(0)⋅Sr(τ)〉(r=x,y,z), of the spin components, quantities which describe the persistence in microscopic correlation of the spin motion in the thermal equilibrium sample. The decay of the Gr(τ)Gr(τ) is shown to be level-specific; i.e., Gr(τ)Gr(τ) is composed of a sum of contribution associated with individual eigenstates, each of which decays exponentially via a process that is uncoupled to the decay in other eigenstates. This behavior differs markedly from the decay of the nonequilibrium parts of a perturbed density matrix, which involves coupled degree of freedom of the electron spin system. An expression for the level-specific relaxation times has been derived in terms of Redfield matrix elements. This expression is valid for any S⩾1 when the static spin Hamiltonian consists of Zeeman and zfs contributions of arbitrary magnitude. Simple closed-form expressions are given for level-specific relaxation times in the cylindrical and orthorhombic zfs limits for S=1 and S=3/2. The theory is used to interpret electron and nuclear spin relaxation for S=3/2 with specific reference to high-spin Co(II), for which the zfs splittings are typically large. For this spin system, the presence of orthorhombic terms in the zfs tensor causes profound shortening of the electron spin relaxation times relative to the reference cylindrical zfs case and, in consequence, a comparably large rhombicity-induced depression of the NMR relaxation efficiency. © 2001 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70242/2/JCPSA6-115-11-5005-1.pd

    Reduced lifespan and increased ageing driven by genetic drift in small populations

    Get PDF
    Explaining the strong variation in lifespan among organisms remains a major challenge in evolutionary biology. Whereas previous work has concentrated mainly on differences in selection regimes and selection pressures, we hypothesize that differences in genetic drift may explain some of this variation. We develop a model to formalize this idea and show that the strong positive relationship between lifespan and genetic diversity predicted by this model indeed exists among populations of Daphnia magna, and that ageing is accelerated in small populations. Additional results suggest that this is due to increased drift in small populations rather than adaptation to environments favoring faster life histories. First, the correlation between genetic diversity and lifespan remains significant after statistical correction for potential environmental covariates. Second, no trade-offs are observed; rather, all investigated traits show clear signs of increased genetic load in the small populations. Third, hybrid vigor with respect to lifespan is observed in crosses between small but not between large populations. Together, these results suggest that the evolution of lifespan and ageing can be strongly affected by genetic drift, especially in small populations, and that variation in lifespan and ageing may often be nonadaptive, due to a strong contribution from mutation accumulation
    • …
    corecore