100,497 research outputs found
Applications of concurrent access patterns in web usage mining
This paper builds on the original data mining and modelling research which has proposed the discovery of novel structural relation patterns, applying the approach in web usage mining. The focus of attention here is on concurrent access patterns (CAP), where an overarching framework illuminates the methodology for web access patterns post-processing. Data pre-processing, pattern discovery and patterns analysis all proceed in association with access patterns mining, CAP mining and CAP modelling. Pruning and selection of access pat-terns takes place as necessary, allowing further CAP mining and modelling to be pursued in the search for the most interesting concurrent access patterns. It is shown that higher level CAPs can be modelled in a way which brings greater structure to bear on the process of knowledge discovery. Experiments with real-world datasets highlight the applicability of the approach in web navigation
Photoelectric emission from the alkali metal doped vacuum-ice interface
The photoelectron photoemission spectra and thresholds for low coverages of Li and K adsorbed on water-ice have been measured, compared with photoionization spectra of the gas-phase atoms, and modeled by quantum chemical calculations. For both alkali metals the threshold for photoemission is dramatically decreased and the cross section increased on adsorption to the water-ice surface. Quantum chemical calculations suggest that the initial state is formed by the metal atoms adsorbed into the water-ice surface, forming a state with a delocalized electron distribution. This state is metastable and decays on the hundreds of seconds time scale at 92 K. The decay is markedly faster for Li than for K, probably due to diffusion into the ice film
Recommended from our members
Deaf and hearing children's picture naming Impact of age of acquisition and language modality on representational gesture
Stefanini, Bello, Caselli, Iverson, & Volterra (2009) reported that Italian 24-36 month old children use a high proportion of representational gestures to accompany their spoken responses when labelling pictures. The two studies reported here used the same naming task with (1) typically developing 24-46-month-old hearing children acquiring English and (2) 24-63-month-old deaf children of deaf and hearing parents acquiring British Sign Language (BSL) and spoken English. In Study 1 children scored within the range of correct spoken responses previously reported, but produced very few representational gestures. However, when they did gesture, they expressed the same action meanings as reported in previous research. The action bias was also observed in deaf children of hearing parents in Study 2, who labelled pictures with signs, spoken words and gestures. The deaf group with deaf parents used BSL almost exclusively with few additional gestures. The function of representational gestures in spoken and signed vocabulary development is considered in relation to differences between native and non-native sign language acquisition
Atomic Scale Sliding and Rolling of Carbon Nanotubes
A carbon nanotube is an ideal object for understanding the atomic scale
aspects of interface interaction and friction. Using molecular statics and
dynamics methods different types of motion of nanotubes on a graphite surface
are investigated. We found that each nanotube has unique equilibrium
orientations with sharp potential energy minima. This leads to atomic scale
locking of the nanotube.
The effective contact area and the total interaction energy scale with the
square root of the radius. Sliding and rolling of nanotubes have different
characters. The potential energy barriers for sliding nanotubes are higher than
that for perfect rolling. When the nanotube is pushed, we observe a combination
of atomic scale spinning and sliding motion. The result is rolling with the
friction force comparable to sliding.Comment: 4 pages (two column) 6 figures - one ep
A Deep Relevance Matching Model for Ad-hoc Retrieval
In recent years, deep neural networks have led to exciting breakthroughs in
speech recognition, computer vision, and natural language processing (NLP)
tasks. However, there have been few positive results of deep models on ad-hoc
retrieval tasks. This is partially due to the fact that many important
characteristics of the ad-hoc retrieval task have not been well addressed in
deep models yet. Typically, the ad-hoc retrieval task is formalized as a
matching problem between two pieces of text in existing work using deep models,
and treated equivalent to many NLP tasks such as paraphrase identification,
question answering and automatic conversation. However, we argue that the
ad-hoc retrieval task is mainly about relevance matching while most NLP
matching tasks concern semantic matching, and there are some fundamental
differences between these two matching tasks. Successful relevance matching
requires proper handling of the exact matching signals, query term importance,
and diverse matching requirements. In this paper, we propose a novel deep
relevance matching model (DRMM) for ad-hoc retrieval. Specifically, our model
employs a joint deep architecture at the query term level for relevance
matching. By using matching histogram mapping, a feed forward matching network,
and a term gating network, we can effectively deal with the three relevance
matching factors mentioned above. Experimental results on two representative
benchmark collections show that our model can significantly outperform some
well-known retrieval models as well as state-of-the-art deep matching models.Comment: CIKM 2016, long pape
Fluctuation-Driven Molecular Transport in an Asymmetric Membrane Channel
Channel proteins, that selectively conduct molecules across cell membranes,
often exhibit an asymmetric structure. By means of a stochastic model, we argue
that channel asymmetry in the presence of non-equilibrium fluctuations, fueled
by the cell's metabolism as observed recently, can dramatically influence the
transport through such channels by a ratchet-like mechanism. For an
aquaglyceroporin that conducts water and glycerol we show that a previously
determined asymmetric glycerol potential leads to enhanced inward transport of
glycerol, but for unfavorably high glycerol concentrations also to enhanced
outward transport that protects a cell against poisoning.Comment: REVTeX4, 4 pages, 3 figures; Accepted for publication in Phys. Rev.
Let
The binary mass transfer origin of the red blue straggler sequence in M30
Two separated sequences of blue straggler stars (BSSs) have been revealed by
Ferraro et al. (2009) in the color-magnitude diagram (CMD) of the Milky Way
globular cluster M30. Their presence has been suggested to be related to the
two BSS formation channels (namely, collisions and mass-transfer in close
binaries) operating within the same stellar system. The blue sequence was
indeed found to be well reproduced by collisional BSS models. In contrast, no
specific models for mass transfer BSSs were available for an old stellar system
like M30. Here we present binary evolution models, including case-B mass
transfer and binary merging, specifically calculated for this cluster. We
discuss in detail the evolutionary track of a binary, which
spends approximately 4 Gyr in the BSS region of the CMD of a 13 Gyr old
cluster. We also run Monte-Carlo simulations to study the distribution of mass
transfer BSSs in the CMD and to compare it with the observational data. Our
results show that: (1) the color and magnitude distribution of synthetic mass
transfer BSSs defines a strip in the CMD that nicely matches the observed red
BSS sequence, thus providing strong support to the mass transfer origin for
these stars; (2) the CMD distribution of synthetic BSSs never attains the
observed location of the blue BSS sequence, thus reinforcing the hypothesis
that the latter formed through a different channel (likely collisions); (3)
most () of the synthetic BSSs are produced by mass-transfer models,
while the remaining requires the contribution from merger models.Comment: 8 pages, 5 figures, accepted to Ap
SPIRE imaging of M 82: Cool dust in the wind and tidal streams
M 82 is a unique representative of a whole class of galaxies, starbursts with superwinds, in the Very Nearby Galaxy Survey with Herschel. In addition, its interaction with the M 81 group has stripped a significant portion of its interstellar medium from its disk. SPIRE maps now afford better characterization of the far-infrared emission from cool dust outside the disk, and sketch a far more complete picture of its mass distribution and energetics than previously possible. They show emission coincident in projection with the starburst wind and in a large halo, much more extended than the PAH band emission seen with Spitzer. Some complex substructures coincide with the brightest PAH filaments, and others with tidal streams seen in atomic hydrogen. We subtract the far-infrared emission of the starburst and underlying disk from the maps, and derive spatially-resolved far-infrared colors for the wind and halo. We interpret the results in terms of dust mass, dust temperature, and global physical conditions. In particular, we examine variations in the dust physical properties as a function of distance from the center and the wind polar axis, and conclude that more than two thirds of the extraplanar dust has been removed by tidal interaction, and not entrained by the starburst wind
- …
