373 research outputs found

    Applications of Scanning Electron Microscopy and X-Ray Microanalysis in Inner Ear Pathology

    Get PDF
    Surface pathology of inner ear structures so far described in detail concern cochlear and vestibular hair cells and the stria vascularis. In man, surgical intervention into the inner ear is very uncommon and when performed is in general with the primary objective of destroying the diseased peripheral end organs. The vast majority of inner ear tissue available for use with scanning electron microscopy (SEM) is therefore obtained from animals. The present paper reviews the progression of surface pathology caused by aminoglycoside antibiotics, acoustic overstimulation and in a guinea pig strain with genetic inner ear disease. The primary site of onset of surface pathology differs, depending on the underlying cause. Advanced surface pathology shows a similar type of morphological degeneration independent of cause. The combination of SEM and energy dispersive X-ray microanalysis (XRMA) of inner ear pathology has as yet been reported in only three studies, all concerning inner ear fluids or otoconia

    Comment on ``Strangeness enhancement in p+Ap+A and S+A+A interactions at energies near 200 AA GeV"

    Get PDF
    We argue that the recent analysis of strangeness production in nuclear collisions at 200 AA GeV/cc performed by Topor Pop {\it et al.} \cite{To:95} is flawed. The conclusions are based on an erroneous interpretation of the data and the numerical model results. The term ``strangeness enhancement" is used in a misleading way.Comment: 4 pages REVTEX 3.0, no figures; Comment submitted to Physical Review

    Importance of reaction volume in hadronic collisions: Canonical enhancement

    Get PDF
    We study the canonical flavor enhancement arising from exact conservation of strangeness, and charm flavor. Both the theoretical motivation, and the practical consequences are explored. We argue using qualitative theoretical arguments and quantitative evaluation, that this proposal to reevaluate strangeness signature of quark--gluon plasma is not able to explain the majority of available experimental results.Comment: 14 pages including 6 figures, submitted to Journal of Physics G Presented at: Strange Quark Matter, September 2001, Frankfur

    The food water energy nexus in an urban context: Connecting theory and practice for nexus governance

    Get PDF
    The growing body of literature on the Food-Water-Energy (FWE) nexus during the last decade covers a variety of disciplinary perspectives and spatial scales. However, to date the urban FWE nexus has received less attention. In this paper, we review the FWE nexus literature with the focus on urban scale and identify gaps in the scholarly knowledge base with regard to practical applications for the FWE nexus governance in cities. Our findings suggest that there is still a mismatch between theoretical nexus governance and community perceptions. Successful governance is an iterative process, necessitating stakeholder input, reflection and response. While research developing the body of urban FWE governance knowledge has increased rapidly, reflection on those results to unpack the nexus complexity and support different governance actors is still limited. We discuss an approach for making the FWE nexus connections more visible and practical by focusing on the urban governance actors and illustrating the intersecting interests and concerns of different actors within the food, water, and energy systems. Mapping the urban governance actors to the sub-elements of the FWE systems highlights common connections and overlapping interests, paving the road toward more integrated governance and participatory solutions. Identifying the tangible and intangible connections among governance actors also helps to reduce the ambiguity of the FWE nexus, and facilitates multi-stakeholder knowledge, data or resources sharing. The resultant approach aims to disaggregate the complexity of the FWE nexus and make its governance more attainable in cities

    Density saturation and the decrease of the normalised width of the multiplicity distribution in high energy pp collisions

    Full text link
    It is experimentally observed that the width of the KNO multiplicity distribution --or the negative binomial parameter 1/k-- for pp collisions, in the energy region 10 to 1800 GeV, is an increasing function of the energy. We argue that in models with parton or string saturation such trend will necessary change: at some energy the distribution will start to become narrower. In the framework of percolating strings, we have estimated the change to occur at an energy of the order of 5--10 TeV.Comment: 10 pages, 4 figures, uses elsart and amsmath; comparison with some other models was added; version accepted by PL

    Baryon Stopping and Charged Particle Distributions in Central Pb+Pb Collisions at 158 GeV per Nucleon

    Get PDF
    Net proton and negative hadron spectra for central \PbPb collisions at 158 GeV per nucleon at the CERN SPS were measured and compared to spectra from lighter systems. Net baryon distributions were derived from those of net protons, utilizing model calculations of isospin contributions as well as data and model calculations of strange baryon distributions. Stopping (rapidity shift with respect to the beam) and mean transverse momentum \meanpt of net baryons increase with system size. The rapidity density of negative hadrons scales with the number of participant nucleons for nuclear collisions, whereas their \meanpt is independent of system size. The \meanpt dependence upon particle mass and system size is consistent with larger transverse flow velocity at midrapidity for \PbPb compared to \SS central collisions.Comment: This version accepted for publication in PRL. 4 pages, 3 figures. Typos corrected, some paragraphs expanded in response to referee comments, to better explain details of analysi

    Strangeness and Quark Gluon Plasma

    Full text link
    A brief summary of strangeness mile stones is followed by a chemical non-equilibrium statistical hadronization analysis of strangeness results at SPS and RHIC. Strange particle production in AA interactions at \sqrt{s_{NN}}\ge 8.6 GeV can be understood consistently as originating from the deconfined quark--gluon plasma in a sudden hadronization process. Onset of QGP formation as function of energy is placed in the beam energy interval 10--30A GeV/c. Strangeness anomalies at LHC are described.Comment: 30 pages including numerouse figures, tables. Opening Lecture: Strangeness and Quark Gluon Plasma -- what has been learned so far and where do we go at SQM2003, North Carolina, March 2003, submitted to J. Phys.

    Measurement of the diffractive structure function in deep inelastic scattering at HERA

    Full text link
    This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in epep interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of \xpom, the momentum fraction lost by the proton, of β\beta, the momentum fraction of the struck quark with respect to \xpom, and of Q2Q^2. The \xpom dependence is consistent with the form \xpoma where a = 1.30 ± 0.08 (stat)  0.14+ 0.08 (sys)a~=~1.30~\pm~0.08~(stat)~^{+~0.08}_{-~0.14}~(sys) in all bins of β\beta and Q2Q^2. In the measured Q2Q^2 range, the diffractive structure function approximately scales with Q2Q^2 at fixed β\beta. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule.Comment: 36 pages, latex, 11 figures appended as uuencoded fil

    Observation of Scaling Violations in Scaled Momentum Distributions at HERA

    Get PDF
    Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of xx and Q2Q^2 using the ZEUS detector. The evolution of the scaled momentum, xpx_p, with Q2,Q^2, in the range 10 to 1280 GeV2GeV^2, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of Q2Q^2.Comment: 21 pages including 4 figures, to be published in Physics Letters B. Two references adde
    corecore