3,647 research outputs found

    Comparative genomics of vertebrate Fox cluster loci

    Get PDF
    BACKGROUND: Vertebrate genomes contain numerous duplicate genes, many of which are organised into paralagous regions indicating duplication of linked groups of genes. Comparison of genomic organisation in different lineages can often allow the evolutionary history of such regions to be traced. A classic example of this is the Hox genes, where the presence of a single continuous Hox cluster in amphioxus and four vertebrate clusters has allowed the genomic evolution of this region to be established. Fox transcription factors of the C, F, L1 and Q1 classes are also organised in clusters in both amphioxus and humans. However in contrast to the Hox genes, only two clusters of paralogous Fox genes have so far been identified in the Human genome and the organisation in other vertebrates is unknown. RESULTS: To uncover the evolutionary history of the Fox clusters, we report on the comparative genomics of these loci. We demonstrate two further paralogous regions in the Human genome, and identify orthologous regions in mammalian, chicken, frog and teleost genomes, timing the duplications to before the separation of the actinopterygian and sarcopterygian lineages. An additional Fox class, FoxS, was also found to reside in this duplicated genomic region. CONCLUSION: Comparison of loci identifies the pattern of gene duplication, loss and cluster break up through multiple lineages, and suggests FoxS1 is a likely remnant of Fox cluster duplication

    Comparative genomics of Lbx loci reveals conservation of identical Lbx ohnologs in bony vertebrates.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: Lbx/ladybird genes originated as part of the metazoan cluster of Nk homeobox genes. In all animals investigated so far, both the protostome genes and the vertebrate Lbx1 genes were found to play crucial roles in neural and muscle development. Recently however, additional Lbx genes with divergent expression patterns were discovered in amniotes. Early in the evolution of vertebrates, two rounds of whole genome duplication are thought to have occurred, during which 4 Lbx genes were generated. Which of these genes were maintained in extant vertebrates, and how these genes and their functions evolved, is not known. RESULTS: Here we searched vertebrate genomes for Lbx genes and discovered novel members of this gene family. We also identified signature genes linked to particular Lbx loci and traced the remnants of 4 Lbx paralogons (two of which retain Lbx genes) in amniotes. In teleosts, that have undergone an additional genome duplication, 8 Lbx paralogons (three of which retain Lbx genes) were found. Phylogenetic analyses of Lbx and Lbx-associated genes show that in extant, bony vertebrates only Lbx1- and Lbx2-type genes are maintained. Of these, some Lbx2 sequences evolved faster and were probably subject to neofunctionalisation, while Lbx1 genes may have retained more features of the ancestral Lbx gene. Genes at Lbx1 and former Lbx4 loci are more closely related, as are genes at Lbx2 and former Lbx3 loci. This suggests that during the second vertebrate genome duplication, Lbx1/4 and Lbx2/3 paralogons were generated from the duplicated Lbx loci created during the first duplication event. CONCLUSION: Our study establishes for the first time the evolutionary history of Lbx genes in bony vertebrates, including the order of gene duplication events, gene loss and phylogenetic relationships. Moreover, we identified genetic hallmarks for each of the Lbx paralogons that can be used to trace Lbx genes as other vertebrate genomes become available. Significantly, we show that bony vertebrates only retained copies of Lbx1 and Lbx2 genes, with some Lbx2 genes being highly divergent. Thus, we have established a base on which the evolution of Lbx gene function in vertebrate development can be evaluated

    A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila.

    Get PDF
    Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments simultaneously through a hierarchical cascade of gene regulation. Gap genes constitute the first layer of the Drosophila segmentation gene hierarchy, downstream of maternal gradients such as that of Caudal (Cad). We use data-driven mathematical modelling and phase space analysis to show that shifting gap domains in the posterior half of the Drosophila embryo are an emergent property of a robust damped oscillator mechanism, suggesting that the regulatory dynamics underlying long- and short-germband segmentation are much more similar than previously thought. In Tribolium, Cad has been proposed to modulate the frequency of the segmentation oscillator. Surprisingly, our simulations and experiments show that the shift rate of posterior gap domains is independent of maternal Cad levels in Drosophila. Our results suggest a novel evolutionary scenario for the short- to long-germband transition and help explain why this transition occurred convergently multiple times during the radiation of the holometabolan insects.MINECO BFU2009-10184/BFU2012-33775/SEV-2012-0208 European Commission FP7/KBBE-2011/5/289434 La Caixa Savings Bank (PhD fellowship to BV) KLI Klosterneuburg (PhD Writing-up & Postdoctoral Fellowships to BV) Wissenschaftskolleg zu Berlin (Wiko) (Fellowships to JJ and AC

    Pollination by hoverflies in the Anthropocene

    Get PDF
    Pollinator declines, changes in land use and climate-induced shifts in phenology have the potential to seriously affect ecosystem function and food security by disrupting pollination services provided by insects. Much of the current research focuses on bees, or groups other insects together as ‘non-bee pollinators’, obscuring the relative contribution of this diverse group of organisms. Prominent among the ‘non-bee pollinators’ are the hoverflies, known to visit at least 72% of global food crops, which we estimate to be worth around US$300 billion per year, together with over 70% of animal pollinated wildflowers. In addition, hoverflies provide ecosystem functions not seen in bees, such as crop protection from pests, recycling of organic matter and long-distance pollen transfer. Migratory species, in particular, can be hugely abundant and unlike many insect pollinators, do not yet appear to be in serious decline. In this review, we contrast the roles of hoverflies and bees as pollinators, discuss the need for research and monitoring of different pollinator responses to anthropogenic change and examine emerging research into large populations of migratory hoverflies, the threats they face and how they might be used to improve sustainable agriculture

    The LHCb RICH upgrade for the high luminosity LHC era

    Get PDF
    The hadron particle identification provided by the RICH system in LHCb over a momentum range of 2.6–100 GeV/c has been a key element of the success of the experiment and will remain equally important for Upgrade II. With luminosities expected up to 7.5 times those expected for Upgrade I and 75 times those realised in the past, maintaining the current excellent particle identification performance demands a substantial improvement in the precision of the measurements of the space and time coordinates of the photons detected in the RICH. It will require a readout strategy with high-resolution timing information and making significant improvements in the resolution of the reconstructed Cherenkov angle

    Adaptive strategies of high-flying migratory hoverflies in response to wind currents: Flight behaviour of migrant hoverflies

    Get PDF
    Large migrating insects, flying at high altitude, often exhibit complex behaviour. They frequently elect to fly on winds with directions quite different from the prevailing direction, and they show a degree of common orientation, both of which facilitate transport in seasonally beneficial directions. Much less is known about the migration behaviour of smaller (10-70 mg) insects. To address this issue, we used radar to examine the high-altitude flight of hoverflies (Diptera: Syrphidae), a group of day-active, medium-sized insects commonly migrating over the UK. We found that autumn migrants, which must move south, did indeed show migration timings and orientation responses that would take them in this direction, despite the unfavourability of the prevailing winds. Evidently, these hoverfly migrants must have a compass (probably a time-compensated solar mechanism), and a means of sensing the wind direction (which may be determined with sufficient accuracy at ground level, before take-off). By contrast, hoverflies arriving in the UK in spring showed weaker orientation tendencies, and did not correct for wind drift away from their seasonally adaptive direction (northwards). However, the spring migrants necessarily come from the south (on warm southerly winds), so we surmise that complex orientation behaviour may not be so crucial for the spring movements

    Test of the photon detection system for the LHCb RICH Upgrade in a charged particle beam

    Full text link
    The LHCb detector will be upgraded to make more efficient use of the available luminosity at the LHC in Run III and extend its potential for discovery. The Ring Imaging Cherenkov detectors are key components of the LHCb detector for particle identification. In this paper we describe the setup and the results of tests in a charged particle beam, carried out to assess prototypes of the upgraded opto-electronic chain from the Multi-Anode PMT photosensor to the readout and data acquisition system.Comment: 25 pages, 22 figure

    Experimental study of air bubbles in a simulated cardiopulmonary bypass system with flow constriction

    Full text link
    An experimental study is performed to examine the breaking of an air bubble in the flow passage of a simulated cardiopulmonary bypass system by means of a flow constriction. The purpose of the study is to discover a geometry of the flow constriction which is efficient in breaking air bubbles while providing the least resistance to the flow of blood, i.e. to develop a new device for the oxygenation of the blood in extracorporeal circulation.Both plasma and water are used in the study. The use of plasma is to simulate the principal transport properties of the human blood and enable direct visualization of bubbles. Water is used for comparison with plasma to determine the influence of fluid properties on the breaking of bubbles. Several different shapes of flow constriction are tested. It is observed that as a result of rapid changes in the liquid pressure and bubble shape, an air bubble breaks into many bubbles at downstream from the flow constriction. The results are quantatively expressed by the number of baby bubbles vs. the flow rate.It is disclosed that the flask-shape constriction is efficient in breaking air bubbles while providing ideal passage for the flow of blood. The number of baby bubbles is found to increase with an increase in the fluid viscosity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32740/1/0000109.pd

    Premature Senescence and Increased TGFβ Signaling in the Absence of Tgif1

    Get PDF
    Transforming growth factor β (TGFβ) signaling regulates cell cycle progression in several cell types, primarily by inducing a G1 cell cycle arrest. Tgif1 is a transcriptional corepressor that limits TGFβ responsive gene expression. Here we demonstrate that primary mouse embryo fibroblasts (MEFs) lacking Tgif1 proliferate slowly, accumulate increased levels of DNA damage, and senesce prematurely. We also provide evidence that the effects of loss of Tgif1 on proliferation and senescence are not limited to primary cells. The increased DNA damage in Tgif1 null MEFs can be partially reversed by culturing cells at physiological oxygen levels, and growth in normoxic conditions also partially rescues the proliferation defect, suggesting that in the absence of Tgif1 primary MEFs are less able to cope with elevated levels of oxidative stress. Additionally, we show that Tgif1 null MEFs are more sensitive to TGFβ-mediated growth inhibition, and that treatment with a TGFβ receptor kinase inhibitor increases proliferation of Tgif1 null MEFs. Conversely, persistent treatment of wild type cells with low levels of TGFβ slows proliferation and induces senescence, suggesting that TGFβ signaling also contributes to cellular senescence. We suggest that in the absence of Tgif1, a persistent increase in TGFβ responsive transcription and a reduced ability to deal with hyperoxic stress result in premature senescence in primary MEFs
    • …
    corecore