152 research outputs found

    Atomistic origins of high-performance in hybrid halide perovskite solar cells

    Get PDF
    The performance of organometallic perovskite solar cells has rapidly surpassed that of both conventional dye-sensitised and organic photovoltaics. High power conversion efficiency can be realised in both mesoporous and thin-film device architectures. We address the origin of this success in the context of the materials chemistry and physics of the bulk perovskite as described by electronic structure calculations. In addition to the basic optoelectronic properties essential for an efficient photovoltaic device (spectrally suitable band gap, high optical absorption, low carrier effective masses), the materials are structurally and compositionally flexible. As we show, hybrid perovskites exhibit spontaneous electric polarisation; we also suggest ways in which this can be tuned through judicious choice of the organic cation. The presence of ferroelectric domains will result in internal junctions that may aid separation of photoexcited electron and hole pairs, and reduction of recombination through segregation of charge carriers. The combination of high dielectric constant and low effective mass promotes both Wannier-Mott exciton separation and effective ionisation of donor and acceptor defects. The photoferroic effect could be exploited in nanostructured films to generate a higher open circuit voltage and may contribute to the current-voltage hysteresis observed in perovskite solar cells.Comment: 6 pages, 5 figure

    Characterization of the apoptotic response of human leukemia cells to organosulfur compounds

    Get PDF
    Background: Novel therapeutic agents that selectively induce tumor cell death are urgently needed in the clinical management of cancers. Such agents would constitute effective adjuvant approaches to traditional chemotherapy regimens. Organosulfur compounds (OSCs), such as diallyl disulfide, have demonstrated anti-proliferative effects on cancer cells. We have previously shown that synthesized relatives of dysoxysulfone, a natural OSC derived from the Fijian medicinal plant, Dysoxylum richi, possess tumor-specific antiproliferative effects and are thus promising lead candidates. Methods: Because our structure-activity analyses showed that regions flanking the disulfide bond mediated specificity, we synthesized 18 novel OSCs by structural modification of the most promising dysoxysulfone derivatives. These compounds were tested for anti-proliferative and apoptotic activity in both normal and leukemic cells. Results: Six OSCs exhibited tumor-specific killing, having no effect on normal bone marrow, and are thus candidates for future toxicity studies. We then employed mRNA expression profiling to characterize the mechanisms by which different OSCs induce apoptosis. Using Gene Ontology analysis we show that each OSC altered a unique set of pathways, and that these differences could be partially rationalized from a transcription factor binding site analysis. For example, five compounds altered genes with a large enrichment of p53 binding sites in their promoter regions (p < 0.0001). Conclusions: Taken together, these data establish OSCs derivatized from dysoxysulfone as a novel group of compounds for development as anti-cancer agents

    Identifying molecular features that distinguish fluvastatin-sensitive breast tumor cells

    Get PDF
    Statins, routinely used to treat hypercholesterolemia, selectively induce apoptosis in some tumor cells by inhibiting the mevalonate pathway. Recent clinical studies suggest that a subset of breast tumors is particularly susceptible to lipophilic statins, such as fluvastatin. To quickly advance statins as effective anticancer agents for breast cancer treatment, it is critical to identify the molecular features defining this sensitive subset. We have therefore characterized fluvastatin sensitivity by MTT assay in a panel of 19 breast cell lines that reflect the molecular diversity of breast cancer, and have evaluated the association of sensitivity with several clinicopathological and molecular features. A wide range of fluvastatin sensitivity was observed across breast tumor cell lines, with fluvastatin triggering cell death in a subset of sensitive cell lines. Fluvastatin sensitivity was associated with an estrogen receptor alpha (ERa)-negative, basal-like tumor subtype, features that can be scored with routine and/or strong preclinical diagnostics. To ascertain additional candidate sensitivity-associated molecular features, we mined publicly available gene expression datasets, identifying genes encoding regulators of mevalonate production, nonsterol lipid homeostasis, and global cellular metabolism, including the oncogene MYC. Further exploration of this data allowed us to generate a 10-gene mRNA abundance signature predictive of fluvastatin sensitivity, which showed preliminary validation in an independent set of breast tumor cell lines. Here, we have therefore identified several candidate predictors of sensitivity to fluvastatin treatment in breast cancer, which warrant further preclinical and clinical evaluation.Fil: Goard, Carolyn A.. University Health Network. Princess Margaret Cancer Centre. Ontario Cancer Institute and Campbell Family Institute for Breast Cancer Research; Canadá. University Of Toronto; CanadáFil: Chan Seng Yue, Michelle . University Health Network. Princess Margaret Cancer Centre. Ontario Cancer Institute and Campbell Family Institute for Breast Cancer Research; Canadá. Ontario Institute of Cancer Research. Informatics and Biocomputing Platform; CanadáFil: Mullen, Peter J.. University Health Network. Princess Margaret Cancer Centre. Ontario Cancer Institute and Campbell Family Institute for Breast Cancer Research; CanadáFil: Quiroga, Ariel Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina. University of Alberta; CanadáFil: Wasylishen, Amanda R.. University Health Network. Princess Margaret Cancer Centre. Ontario Cancer Institute and Campbell Family Institute for Breast Cancer Research; Canadá. University Of Toronto; CanadáFil: Clendening, James W.. University Health Network. Princess Margaret Cancer Centre. Ontario Cancer Institute and Campbell Family Institute for Breast Cancer Research; Canadá. University Of Toronto; CanadáFil: Sendorek, Dorota H. S.. Ontario Institute of Cancer Research. Informatics and Biocomputing Platform; CanadáFil: Haider, Syed. Ontario Institute of Cancer Research. Informatics and Biocomputing Platform; CanadáFil: Lehner, Richard. University of Alberta; CanadáFil: Boutros, Paul C.. University Of Toronto; Canadá. Ontario Institute of Cancer Research. Informatics and Biocomputing Platform; CanadáFil: Penn, Linda Z.. University Health Network. Princess Margaret Cancer Centre. Ontario Cancer Institute and Campbell Family Institute for Breast Cancer Research; Canadá. University Of Toronto; Canad

    Selective AKR1C3 inhibitors do not recapitulate the anti-leukaemic activities of the pan-AKR1C inhibitor medroxyprogesterone acetate

    Get PDF
    Background: We and others have identified the aldo-keto reductase AKR1C3 as a potential drug target in prostate cancer, breast cancer and leukaemia. As a consequence, significant effort is being invested in the development of AKR1C3-selective inhibitors. Methods: We report the screening of an in-house drug library to identify known drugs that selectively inhibit AKR1C3 over the closely related isoforms AKR1C1, 1C2 and 1C4. This screen initially identified tetracycline as a potential AKR1C3-selective inhibitor. However, mass spectrometry and nuclear magnetic resonance studies identified that the active agent was a novel breakdown product (4-methyl(de-dimethylamine)-tetracycline (4-MDDT)). Results: We demonstrate that, although 4-MDDT enters AML cells and inhibits their AKR1C3 activity, it does not recapitulate the anti-leukaemic actions of the pan-AKR1C inhibitor medroxyprogesterone acetate (MPA). Screens of the NCI diversity set and an independently curated small-molecule library identified several additional AKR1C3-selective inhibitors, none of which had the expected anti-leukaemic activity. However, a pan AKR1C, also identified in the NCI diversity set faithfully recapitulated the actions of MPA. Conclusions: In summary, we have identified a novel tetracycline-derived product that provides an excellent lead structure with proven drug-like qualities for the development of AKR1C3 inhibitors. However, our findings suggest that, at least in leukaemia, selective inhibition of AKR1C3 is insufficient to elicit an anticancer effect and that multiple AKR1C inhibition may be required

    Defining the Sister Rat Mammary Tumor Cell Lines HH-16 cl.2/1 and HH-16.cl.4 as an In Vitro Cell Model for Erbb2

    Get PDF
    Cancer cell lines have been shown to be reliable tools in genetic studies of breast cancer, and the characterization of these lines indicates that they are good models for studying the biological mechanisms underlying this disease. Here, we describe the molecular cytogenetic/genetic characterization of two sister rat mammary tumor cell lines, HH-16 cl.2/1 and HH-16.cl.4, for the first time. Molecular cytogenetic analysis using rat and mouse chromosome paint probes and BAC/PAC clones allowed the characterization of clonal chromosome rearrangements; moreover, this strategy assisted in revealing detected breakpoint regions and complex chromosome rearrangements. This comprehensive cytogenetic analysis revealed an increase in the number of copies of the Mycn and Erbb2 genes in the investigated cell lines. To analyze its possible correlation with expression changes, relative RNA expression was assessed by real-time reverse transcription quantitative PCR and RNA FISH. Erbb2 was found to be overexpressed in HH-16.cl.4, but not in the sister cell line HH-16 cl.2/1, even though these lines share the same initial genetic environment. Moreover, the relative expression of Erbb2 decreased after global genome demethylation in the HH-16.cl.4 cell line. As these cell lines are commercially available and have been used in previous studies, the present detailed characterization improves their value as an in vitro cell model. We believe that the development of appropriate in vitro cell models for breast cancer is of crucial importance for revealing the genetic and cellular pathways underlying this neoplasy and for employing them as experimental tools to assist in the generation of new biotherapies

    Principles of Chemical Bonding and Band Gap Engineering in Hybrid Organic–Inorganic Halide Perovskites

    Get PDF
    The performance of solar cells based on hybrid halide perovskites has seen an unparalleled rate of progress, while our understanding of the underlying physical chemistry of these materials trails behind. Superficially, CH3NH3PbI3 is similar to other thin-film photovoltaic materials: a semiconductor with an optical band gap in the optimal region of the electromagnetic spectrum. Microscopically, the material is more unconventional. Progress in our understanding of the local and long-range chemical bonding of hybrid perovskites is discussed here, drawing from a series of computational studies involving electronic structure, molecular dynamics, and Monte Carlo simulation techniques. The orientational freedom of the dipolar methylammonium ion gives rise to temperature-dependent dielectric screening and the possibility for the formation of polar (ferroelectric) domains. The ability to independently substitute on the A, B, and X lattice sites provides the means to tune the optoelectronic properties. Finally, ten critical challenges and opportunities for physical chemists are highlighted
    • …
    corecore