5,603 research outputs found
Structuring and support by Alfven waves around prestellar cores
Observations of molecular clouds show the existence of starless, dense cores,
threaded by magnetic fields. Observed line widths indicate these dense
condensates to be embedded in a supersonically turbulent environment. Under
these conditions, the generation of magnetic waves is inevitable. In this
paper, we study the structure and support of a 1D plane-parallel,
self-gravitating slab, as a monochromatic, circularly polarized Alfven wave is
injected in its central plane. Dimensional analysis shows that the solution
must depend on three dimensionless parameters. To study the nonlinear,
turbulent evolution of such a slab, we use 1D high resolution numerical
simulations. For a parameter range inspired by molecular cloud observations, we
find the following. 1) A single source of energy injection is sufficient to
force persistent supersonic turbulence over several hydrostatic scale heights.
2) The time averaged spatial extension of the slab is comparable to the
extension of the stationary, analytical WKB solution. Deviations, as well as
the density substructure of the slab, depend on the wave-length of the injected
wave. 3) Energy losses are dominated by loss of Poynting-flux and increase with
increasing plasma beta. 4) Good spatial resolution is mandatory, making similar
simulations in 3D currently prohibitively expensive.Comment: 13 pages, 8 figures, accepted for publication in A&A. The manuscript
  with full color, high-resolution, figures can be downloaded from
  http://www.astro.phys.ethz.ch/papers/folini/folini_p_nf.htm
Effects of magnetic fields on radiatively overstable shock waves
We discuss high-resolution simulations of one-dimensional, plane-parallel
shock waves with mean speeds between 150 and 240 km/s propagating into gas with
Alfven velocities up to 40 km/s and outline the conditions under which these
radiative shocks experience an oscillatory instability in the cooling length,
shock velocity, and position of the shock front. We investigate two forms of
postshock cooling: a truncated single power law and a more realistic piecewise
power law. The degree of nonlinearity of the instability depends strongly on
the cooling power law and the Alfven Mach number: for power-law indices \alpha
< 0 typical magnetic field strengths may be insufficient either to stabilize
the fundamental oscillatory mode or to prevent the oscillations from reaching
nonlinear amplitudes.Comment: 11 text pages, LaTeX/AASTeX (aaspp4); 5 figures; accepted by Ap
Lithium depletion in solar-like stars: effect of overshooting based on realistic multi-dimensional simulations
We study lithium depletion in low-mass and solar-like stars as a function of
time, using a new diffusion coefficient describing extra-mixing taking place at
the bottom of a convective envelope. This new form is motivated by
multi-dimensional fully compressible, time implicit hydrodynamic simulations
performed with the MUSIC code. Intermittent convective mixing at the convective
boundary in a star can be modeled using extreme value theory, a statistical
analysis frequently used for finance, meteorology, and environmental science.
In this letter, we implement this statistical diffusion coefficient in a
one-dimensional stellar evolution code, using parameters calibrated from
multi-dimensional hydrodynamic simulations of a young low-mass star. We propose
a new scenario that can explain observations of the surface abundance of
lithium in the Sun and in clusters covering a wide range of ages, from 
50 Myr to  4 Gyr. Because it relies on our physical model of convective
penetration, this scenario has a limited number of assumptions. It can explain
the observed trend between rotation and depletion, based on a single additional
assumption, namely that rotation affects the mixing efficiency at the
convective boundary. We suggest the existence of a threshold in stellar
rotation rate above which rotation strongly prevents the vertical penetration
of plumes and below which rotation has small effects. In addition to providing
a possible explanation for the long standing problem of lithium depletion in
pre-main sequence and main sequence stars, the strength of our scenario is that
its basic assumptions can be tested by future hydrodynamic simulations.Comment: 7 pages, 3 figures, Accepted for publication in ApJ Letter
The Spin Periods and Rotational Profiles of Neutron Stars at Birth
We present results from an extensive set of one- and two-dimensional
radiation-hydrodynamic simulations of the supernova core collapse, bounce, and
postbounce phases, and focus on the protoneutron star (PNS) spin periods and
rotational profiles as a function of initial iron core angular velocity, degree
of differential rotation, and progenitor mass. For the models considered, we
find a roughly linear mapping between initial iron core rotation rate and PNS
spin. The results indicate that the magnitude of the precollapse iron core
angular velocities is the single most important factor in determining the PNS
spin. Differences in progenitor mass and degree of differential rotation lead
only to small variations in the PNS rotational period and profile. Based on our
calculated PNS spins, at ~ 200-300 milliseconds after bounce, and assuming
angular momentum conservation, we estimate final neutron star rotation periods.
We find periods of one millisecond and shorter for initial central iron core
periods of below ~ 10 s. This is appreciably shorter than what previous studies
have predicted and is in disagreement with current observational data from
pulsar astronomy. After considering possible spindown mechanisms that could
lead to longer periods we conclude that there is no mechanism that can robustly
spin down a neutron star from ~ 1 ms periods to the "injection" periods of tens
to hundreds of milliseconds observed for young pulsars. Our results indicate
that, given current knowledge of the limitations of neutron star spindown
mechanisms, precollapse iron cores must rotate with periods around 50-100
seconds to form neutron stars with periods generically near those inferred for
the radio pulsar population.Comment: 31 pages, including 20 color figures. High-resolution figures
  available from the authors upon request. Accepted to Ap
Radiative instabilities in simulations of spherically symmetric supernova blast waves
High-resolution simulations of the cooling regions of spherically symmetric
supernova remnants demonstrate a strong radiative instability. This
instability, whose presence is dependent on the shock velocity, causes
large-amplitude fluctuations in the shock velocity. The fluctuations begin
almost immediately after the radiative phase begins (upon shell formation) if
the shock velocity lies in the unstable range; they last until the shock slows
to speeds less than approximately 130 km/s. We find that shock-velocity
fluctuations from the reverberations of waves within the remnant are small
compared to those due to the instability. Further, we find (in plane-parallel
simulations) that advected inhomogeneities from the external medium do not
interfere with the qualitative nature of the instability-driven fluctuations.
Large-amplitude inhomogeneities may alter the phases of shock-velocity
fluctuations, but do not substantially reduce their amplitudes.Comment: 18 pages text, LaTeX/AASTeX (aaspp4); 10 figures; accepted by Ap
Improved Classification Using Hidden Markov Averaging From Multiple Observation Sequences
The enormous popularity of Hidden Markov models (HMMs) in spatio-temporal pattern recognition is largely due to the ability to 'learn' model parameters from observation sequences through the Baum-Welch and other re-estimation procedures. In this study, HMM parameters are estimated from an ensemble of models trained on individual observation sequences. The proposed methods are shown to provide superior classification performance to competing methods
A Holistic Scenario of Turbulent Molecular Cloud Evolution and Control of the Star Formation Efficiency. First Tests
We compile a holistic scenario for molecular cloud (MC) evolution and control
of the star formation efficiency (SFE), and present a first set of numerical
tests of it. A {\it lossy} compressible cascade can generate density
fluctuations and further turbulence at small scales from large-scale motions,
implying that the turbulence in MCs may originate from the compressions that
form them. Below a {\it sonic} scale \ls, turbulence cannot induce any
further subfragmentation, nor be a dominant support agent against gravity.
Since progressively smaller density peaks contain progressively smaller
fractions of the mass, we expect the SFE to decrease with decreasing \ls, at
least when the cloud is globally supported by turbulence. Our numerical
experiments confirm this prediction. We also find that the collapsed mass
fraction in the simulations always saturates below 100% efficiency. This may be
due to the decreased mean density of the leftover interclump medium, which in
real clouds (not confined to a box) should then be more easily dispersed,
marking the ``death'' of the cloud. We identify two different functional
dependences (``modes'') of the SFE on \ls, which roughly correspond to
globally supported and unsupported cases. Globally supported runs with most of
the turbulent energy at the largest scales have similar SFEs to those of
unsupported runs, providing numerical evidence of the dual role of turbulence,
whereby large-scale turbulent modes induce collapse at smaller scales. We
tentatively suggest that these modes may correspond to the clustered and
isolated modes of star formation, although here they are seen to form part of a
continuum rather than being separate modes. Finally, we compare with previous
proposals that the relevant parameter is the energy injection scale.Comment: 6 pages, 3 figures. Uses emulateapj. Accepted in ApJ Letter
Prevention of Bloodstream Infections With Central Venous Catheters Treated With Anti-Infective Agents Depends on Catheter Type and Insertion Time: Evidence From a Meta-Analysis
Objective: To test the evidence that the risk of infection related to central venous catheters (CVCs) is decreased by anti-infective coating or cuffing. Design: Systematic review of randomized, controlled trials comparing anti-infective with inactive (control) CVCs. Interventions: Average insertion times were taken as a measurement of the length of insertion. Dichotomous data were combined using a fixed effect model and expressed as odds ratio (OR) with 95% confidence interval (CI95). Results: Two trials on antibiotic coating (343 CVCs) had an average insertion time of 6 days; the risk of BSI decreased from 5.1% with control to 0% with anti-infective catheters. There were no trials with longer average insertion times. In three trials on silver collagen cuffs (422 CVCs), the average insertion time ranged from 5 to 8.2 days (median, 7 days); the risk of BSI was 5.6% with control and 3.2% with anti-infective catheters. In another trial on silver collagen cuffs (101 CVCs), the average insertion time was 38 days; the risk of BSI was 3.7% with control and 4.3% with anti-infective catheters. In five trials on chlorhexidine-silver sulfadiazine coating (1,269 CVCs), the average insertion time ranged from 5.2 to 7.5 days (median, 6 days); the risk of BSI decreased from 4.1% with control to 1.9% with anti-infective catheters. In five additional trials on chlorhexidine-silver sulfadiazine coating (1,544 CVCs), the average insertion time ranged from 7.8 to 20 days (median, 12 days); the risk of BSI was 4.5% with control and 4.2% with anti-infective catheters. Conclusions: Antibiotic and chlorhexidine-silver sulfadiazine coatings are anti-infective for short (approximately 1 week) insertion times. For longer insertion times, there are no data on antibiotic coating, and there is evidence of lack of effect for chlorhexidine-silver sulfadiazine coating. For silver-impregnated collagen cuffs, there is evidence of lack of effect for both short- and long-term insertio
- …
