748 research outputs found

    ELVIS - ELectromagnetic Vector Information Sensor

    Get PDF
    The ELVIS instrument was recently proposed by the authors for the Indian Chandrayaan-1 mission to the Moon and is presently under consideration by the Indian Space Research Organisation (ISRO). The scientific objective of ELVIS is to explore the electromagnetic environment of the moon. ELVIS samples the full three-dimensional (3D) electric field vector, E(x,t), up to 18 MHz, with selective Nyqvist frequency bandwidths down to 5 kHz, and one component of the magnetic field vector, B(x,t), from a few Hz up to 100 kHz.As a transient detector, ELVIS is capable of detecting pulses with a minimum pulse width of 5 ns. The instrument comprises three orthogonal electric dipole antennas, one magnetic search coil antenna and a four-channel digital sampling system, utilising flexible digital down conversion and filtering together with state-of-the-art onboard digital signal processing.Comment: 8 pages, 3 figures. Submitted to the DGLR Int. Symposium "To Moon and Beyond", Bremen, Germany, 2005. Companion paper to arXiv:astro-ph/050921

    Electron Density Dropout Near Enceladus in the Context of Water-Vapor and Water-Ice

    Get PDF
    On 12 March 2008, the Cassini spacecraft made a close encounter with the Saturnian moon Enceladus, passing within 52 km of the moon. The spacecraft trajectory was intentionally-oriented in a southerly direction to create a close alignment with the intense water-dominated plumes emitted from the south polar region. During the passage, the Cassini Radio and Plasma Wave System (RPWS) detected two distinct radio signatures: 1) Impulses associated with small water-ice dust grain impacts and 2) an upper hybrid (UH) resonance emission that both intensified and displayed a sharp frequency decrease in the near-vicinity of the moon. The frequency decrease of the UH emission is associated with an unexpectedly sharp decrease in electron density from approximately 90 el/cubic cm to below 20 el/cubic cm that occurs on a time scale of a minute near the closest encounter with the moon. In this work, we consider a number of scenarios to explain this sharp electron dropout, but surmise that electron absorption by ice grains is the most likely process

    Cassini Plasma Spectrometer and hybrid model study on Titan's interaction: Effect of oxygen ions

    Get PDF
    During the Cassini Titan flyby on 2 July 2006 (T15), Titan was surrounded by a magnetospheric plasma flow with density about 0.1 cm‑3 as measured by Cassini Plasma Spectrometer (CAPS). A very low fraction of water group ions (O+) was detected in the flow dominated by hydrogen ions. We show that Titan's plasma interaction can be highly sensitive to the small fraction of oxygen ions in the magnetospheric flow. The ion quantities of the magnetospheric flow during the flyby were obtained from numerical moments calculated from the CAPS measurements; the average ambient magnetic field was determined using the Cassini magnetometer data. We simulated the flyby using a global hybrid model; the water group abundance in the flow was varied in three simulation runs. Based on the simulation results, the oxygen content has an especially notable effect on the extent of Titan's induced magnetosphere. A multi-instrument analysis was performed comparing with the simulations, whereby a comprehensive picture of the plasma properties around Titan during this flyby was obtained. Comparisons between the hybrid model simulations and Cassini measurements during the flyby point toward O+ density in the undisturbed magnetospheric flow having been around 0.008 cm‑3, which would have accounted for one half of the dynamic pressure of the flow.Fil: Sillanpää, I.. Southwest Research Institute; Estados UnidosFil: Young, D. T.. Southwest Research Institute; Estados UnidosFil: Crary, F.. Southwest Research Institute; Estados UnidosFil: Thomsen, M.. Los Alamos National Laboratory,; Estados UnidosFil: Reisenfelc, D.. University of Montana; Estados UnidosFil: Wahlund, J. E.. Swedish Institute of Space Physics; SueciaFil: Bertucci, Cesar. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Kallio, E.. Finnish Meteorological Institute,; FinlandiaFil: Jarvinen, R.. Finnish Meteorological Institute; FinlandiaFil: Janhunen, P.. Finnish Meteorological Institute,; Finlandi

    The Ion Composition of Saturn's Equatorial Ionosphere as Observed by Cassini

    Get PDF
    An edited version of this paper was published by AGU. Copyright 2018 American Geophysical Union.The Cassini Orbiter made the first in situ measurements of the upper atmosphere and ionosphere of Saturn in 2017. The Ion and Neutral Mass Spectrometer (INMS) found molecular hydrogen and helium as well as minor species including water, methane, ammonia, and organics. INMS ion mode measurements of light ion species (H+, H2+, H3+, and He+) and Radio and Plasma Wave Science instrument measurements of electron densities are presented. A photochemical analysis of the INMS and Radio and Plasma Wave Science data indicates that the major ion species near the ionospheric peak must be heavy and molecular with a short chemical lifetime. A quantitative explanation of measured H+ and H3+ densities requires that they chemically react with one or more heavy neutral molecular species that have mixing ratios of about 100 ppm

    Spatial distribution of low-energy plasma around 2 comet 67P/CG from Rosetta measurements

    Get PDF
    International audienceWe use measurements from the Rosetta plasma consortium (RPC) Langmuir probe (LAP) and mutual impedance probe (MIP) to study the spatial distribution of low-energy plasma in the near-nucleus coma of comet 67P/Churyumov-Gerasimenko. The spatial distribution is highly structured with the highest density in the summer hemisphere and above the region connecting the two main lobes of the comet, i.e. the neck region. There is a clear correlation with the neutral density and the plasma to neutral density ratio is found to be ∼1-2·10 −6 , at a cometocentric distance of 10 km and at 3.1 AU from the sun. A clear 6.2 h modulation of the plasma is seen as the neck is exposed twice per rotation. The electron density of the collisonless plasma within 260 km from the nucleus falls of with radial distance as ∼1/r. The spatial structure indicates that local ionization of neutral gas is the dominant source of low-energy plasma around the comet

    Plasma Transport in Saturn's Low‐Latitude Ionosphere: Cassini Data

    Get PDF
    An edited version of this paper was published by AGU. Copyright 2019 American Geophysical Union.In 2017 the Cassini Orbiter made the first in situ measurements of the upper atmosphere and ionosphere of Saturn. The Ion and Neutral Mass Spectrometer in its ion mode measured densities of light ion species (H+, H2+, H3+, and He+), and the Radio and Plasma Wave Science instrument measured electron densities. During proximal orbit 287 (denoted P287), Cassini reached down to an altitude of about 3,000 km above the 1 bar atmospheric pressure level. The topside ionosphere plasma densities measured for P287 were consistent with ionospheric measurements during other proximal orbits. Spacecraft potentials were measured by the Radio and Plasma Wave Science Langmuir probe and are typically about negative 0.3 V. Also, for this one orbit, Ion and Neutral Mass Spectrometer was operated in an instrument mode allowing the energies of incident H+ ions to be measured. H+ is the major ion species in the topside ionosphere. Ion flow speeds relative to Saturn's atmosphere were determined. In the southern hemisphere, including near closest approach, the measured ion speeds were close to zero relative to Saturn's corotating atmosphere, but for northern latitudes, southward ion flow of about 3 km/s was observed. One possible interpretation is that the ring shadowing of the southern hemisphere sets up an interhemispheric plasma pressure gradient driving this flow

    Survey of Saturn Z-mode Emission

    Get PDF
    Because of the role of Z-mode emission in the diffusive scattering and resonant acceleration of electrons, we conduct a survey of intensity in the Saturn inner magnetosphere. Z-mode is primarily observed as “5 kHz” narrowband emission in the lower density regions where the ratio of cyclotron to plasma frequency, fc/fp > 1 to which we limit this study. This occurs at Saturn along the inner edge of the Enceladus torus near the equator and at higher latitudes. We present profiles and parametric fits of intensity as a function of frequency, radius, latitude, and local time. The magnetic field intensity levels are lower than chorus, but the electric field intensities are comparable. We conclude that Z-mode wave-particle interactions may make a significant contribution to electron acceleration in the inner magnetosphere of Saturn, supplementing acceleration produced by chorus emission

    Charged nanograins in the Enceladus plume

    Get PDF
    There have been three Cassini encounters with the south-pole eruptive plume of Enceladus for which the Cassini Plasma Spectrometer (CAPS) had viewing in the spacecraft ram direction. In each case, CAPS detected a cold dense population of heavy charged particles having mass-to-charge (m/q) ratios up to the maximum detectable by CAPS ( 104 amu/e). These particles are interpreted as singly charged nanometer-sized water-ice grains. Although they are detected with both negative and positive net charges, the former greatly outnumber the latter, at least in the m/q range accessible to CAPS. On the most distant available encounter (E3, March 2008) we derive a net (negative) charge density of up to 2600 e/cm3 for nanograins, far exceeding the ambient plasma number density, but less than the net (positive) charge density inferred from the RPWS Langmuir probe data during the same plume encounter. Comparison of the CAPS data from the three available encounters is consistent with the idea that the nanograins leave the surface vents largely uncharged, but become increasingly negatively charged by plasma electron impact as they move farther from the satellite. These nanograin
    corecore