85 research outputs found

    Interactions among oscillatory pathways in NF-kappa B signaling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sustained stimulation with tumour necrosis factor alpha (TNF-alpha) induces substantial oscillations—observed at both the single cell and population levels—in the nuclear factor kappa B (NF-kappa B) system. Although the mechanism has not yet been elucidated fully, a core system has been identified consisting of a negative feedback loop involving NF-kappa B (RelA:p50 hetero-dimer) and its inhibitor I-kappa B-alpha. Many authors have suggested that this core oscillator should couple to other oscillatory pathways.</p> <p>Results</p> <p>First we analyse single-cell data from experiments in which the NF-kappa B system is forced by short trains of strong pulses of TNF-alpha. Power spectra of the ratio of nuclear-to-cytoplasmic concentration of NF-kappa B suggest that the cells' responses are entrained by the pulsing frequency. Using a recent model of the NF-kappa B system due to Caroline Horton, we carried out extensive numerical simulations to analyze the response frequencies induced by trains of pulses of TNF-alpha stimulation having a wide range of frequencies and amplitudes. These studies suggest that for sufficiently weak stimulation, various nonlinear resonances should be observable. To explore further the possibility of probing alternative feedback mechanisms, we also coupled the model to sinusoidal signals with a wide range of strengths and frequencies. Our results show that, at least in simulation, frequencies other than those of the forcing and the main NF-kappa B oscillator can be excited via sub- and superharmonic resonance, producing quasiperiodic and even chaotic dynamics.</p> <p>Conclusions</p> <p>Our numerical results suggest that the entrainment phenomena observed in pulse-stimulated experiments is a consequence of the high intensity of the stimulation. Computational studies based on current models suggest that resonant interactions between periodic pulsatile forcing and the system's natural frequencies may become evident for sufficiently weak stimulation. Further simulations suggest that the nonlinearities of the NF-kappa B feedback oscillator mean that even sinusoidally modulated forcing can induce a rich variety of nonlinear interactions.</p

    Thrombin Induces Macrophage Migration Inhibitory Factor Release and Upregulation in Urothelium: A Possible Contribution to Bladder Inflammation

    Get PDF
    Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine expressed by urothelial cells that mediates bladder inflammation. We investigated the effect of stimulation with thrombin, a Protease Activated Receptor-1 (PAR1) agonist, on MIF release and MIF mRNA upregulation in urothelial cells.MIF and PAR1 expression was examined in normal human immortalized urothelial cells (UROtsa) using real-time RT-PCR, Western blotting and dual immunostaining. MIF and PAR1 immunostaining was also examined in rat urothelium. The effect of thrombin stimulation (100 nM) on urothelial MIF release was examined in UROtsa cells (in vitro) and in rats (in vivo). UROtsa cells were stimulated with thrombin, culture media were collected at different time points and MIF amounts were determined by ELISA. Pentobarbital anesthetized rats received intravesical saline (control), thrombin, or thrombin +2% lidocaine (to block nerve activity) for 1 hr, intraluminal fluid was collected and MIF amounts determined by ELISA. Bladder or UROtsa MIF mRNA was measured using real time RT-PCR.UROtsa cells constitutively express MIF and PAR1 and immunostaining for both was observed in these cells and in the basal and intermediate layers of rat urothelium. Thrombin stimulation of urothelial cells resulted in a concentration- and time-dependent increase in MIF release both in vitro (UROtsa; 2.8-fold increase at 1 hr) and in vivo (rat; 4.5-fold) while heat-inactivated thrombin had no effect. In rats, thrombin-induced MIF release was reduced but not abolished by intravesical lidocaine treatment. Thrombin also upregulated MIF mRNA in UROtsa cells (3.3-fold increase) and in the rat bladder (2-fold increase) where the effect was reduced (1.4-fold) by lidocaine treatment.Urothelial cells express both MIF and PAR1. Activation of urothelial PAR1 receptors, either by locally generated thrombin or proteases present in the urine, may mediate bladder inflammation by inducing urothelial MIF release and upregulating urothelial MIF expression

    Mouse Sphingosine Kinase 1a Is Negatively Regulated through Conventional PKC-Dependent Phosphorylation at S373 Residue

    Get PDF
    Sphingosine kinase is a lipid kinase that converts sphingosine into sphingosine-1-phosphate, an important signaling molecule with intracellular and extracellular functions. Although diverse extracellular stimuli influence cellular sphingosine kinase activity, the molecular mechanisms underlying its regulation remain to be clarified. In this study, we investigated the phosphorylation-dependent regulation of mouse sphingosine kinase (mSK) isoforms 1 and 2. mSK1a was robustly phosphorylated in response to extracellular stimuli such as phorbol ester, whereas mSK2 exhibited a high basal level of phosphorylation in quiescent cells regardless of agonist stimulation. Interestingly, phorbol ester-induced phosphorylation of mSK1a correlated with suppression of its activity. Chemical inhibition of conventional PKCs (cPKCs) abolished mSK1a phosphorylation, while overexpression of PKC alpha, a cPKC isoform, potentiated the phosphorylation, in response to phorbol ester. Furthermore, an in vitro kinase assay showed that PKC alpha directly phosphorylated mSK1a. In addition, phosphopeptide mapping analysis determined that the S373 residue of mSK1a was the only site phosphorylated by cPKC. Interestingly, alanine substitution of S373 made mSK1a refractory to the inhibitory effect of phorbol esters, whereas glutamate substitution of the same residue resulted in a significant reduction in mSK1a activity, suggesting the significant role of this phosphorylation event. Taken together, we propose that mSK1a is negatively regulated through cPKC-dependent phosphorylation at S373 residueopen

    Regulation of miR-146a by RelA/NFkB and p53 in STHdhQ111/HdhQ111 Cells, a Cell Model of Huntington's Disease

    Get PDF
    Huntington's disease (HD) is caused by the expansion of N-terminal polymorphic poly Q stretch of the protein huntingtin (HTT). Deregulated microRNAs and loss of function of transcription factors recruited to mutant HTT aggregates could cause characteristic transcriptional deregulation associated with HD. We observed earlier that expressions of miR-125b, miR-146a and miR-150 are decreased in STHdhQ111/HdhQ111 cells, a model for HD in comparison to those of wild type STHdhQ7/HdhQ7 cells. In the present manuscript, we show by luciferase reporter assays and real time PCR that decreased miR-146a expression in STHdhQ111/HdhQ111 cells is due to decreased expression and activity of p65 subunit of NFkB (RelA/NFkB). By reporter luciferase assay, RT-PCR and western blot analysis, we also show that both miR-150 and miR-125b target p53. This partially explains the up regulation of p53 observed in HD. Elevated p53 interacts with RelA/NFkB, reduces its expression and activity and decreases the expression of miR-146a, while knocking down p53 increases RelA/NFkB and miR-146a expressions. We also demonstrate that expression of p53 is increased and levels of RelA/NFkB, miR-146a, miR-150 and miR-125b are decreased in striatum of R6/2 mice, a mouse model of HD and in cell models of HD. In a cell model, this effect could be reversed by exogenous expression of chaperone like proteins HYPK and Hsp70. We conclude that (i) miR-125b and miR-150 target p53, which in turn regulates RelA/NFkB and miR-146a expressions; (ii) reduced miR-125b and miR-150 expressions, increased p53 level and decreased RelA/NFkB and miR-146a expressions originate from mutant HTT (iii) p53 directly or indirectly regulates the expression of miR-146a. Our observation of interplay between transcription factors and miRNAs using HD cell model provides an important platform upon which further work is to be done to establish if such regulation plays any role in HD pathogenesis

    DMA, a Bisbenzimidazole, Offers Radioprotection by Promoting NFκB Transactivation through NIK/IKK in Human Glioma Cells

    Get PDF
    BACKGROUND: Ionizing radiation (IR) exposure often occurs for human beings through occupational, medical, environmental, accidental and/or other sources. Thus, the role of radioprotector is essential to overcome the complex series of overlapping responses to radiation induced DNA damage. METHODS AND RESULTS: Treatment of human glioma U87 cells with DMA (5- {4-methylpiperazin-1-yl}-2-[2'-(3, 4-dimethoxyphenyl)-5'-benzimidazolyl] in the presence or absence of radiation uncovered differential regulation of an array of genes and proteins using microarray and 2D PAGE techniques. Pathway construction followed by relative quantitation of gene expression of the identified proteins and their interacting partners led to the identification of MAP3K14 (NFκB inducing kinase, NIK) as the candidate gene affected in response to DMA. Subsequently, over expression and knock down of NIK suggested that DMA affects NFκB inducing kinase mediated phosphorylation of IKKα and IKKβ both alone and in the presence of ionizing radiation (IR). The TNF-α induced NFκB dependent luciferase reporter assay demonstrated 1.65, 2.26 and 3.62 fold increase in NFκB activation at 10, 25 and 50 µM DMA concentrations respectively, compared to control cells. This activation was further increased by 5.8 fold in drug + radiation (50 µM +8.5 Gy) treated cells in comparison to control. We observed 51% radioprotection in control siRNA transfected cells that attenuated to 15% in siRNA NIK treated U87 cells, irradiated in presence of DMA at 24 h. CONCLUSIONS: Our studies show that NIK/IKK mediated NFκB activation is more intensified in cells over expressing NIK and treated with DMA, alone or in combination with ionizing radiation, indicating that DMA promotes NIK mediated NFκB signaling. This subsequently leads to the radioprotective effect exhibited by DMA

    Targeting Huntington’s disease through histone deacetylases

    Get PDF
    Huntington’s disease (HD) is a debilitating neurodegenerative condition with significant burdens on both patient and healthcare costs. Despite extensive research, treatment options for patients with this condition remain limited. Aberrant post-translational modification (PTM) of proteins is emerging as an important element in the pathogenesis of HD. These PTMs include acetylation, phosphorylation, methylation, sumoylation and ubiquitination. Several families of proteins are involved with the regulation of these PTMs. In this review, I discuss the current evidence linking aberrant PTMs and/or aberrant regulation of the cellular machinery regulating these PTMs to HD pathogenesis. Finally, I discuss the evidence suggesting that pharmacologically targeting one of these protein families the histone deacetylases may be of potential therapeutic benefit in the treatment of HD

    Regulation of GTP-binding Protein (Galpha s) Expression in Human Myometrial Cells A ROLE FOR TUMOR NECROSIS FACTOR IN MODULATING G s PROMOTER ACETYLATION BY TRANSCRIPTIONAL COMPLEXES

    Get PDF
    The onset of parturition is associated with a number of proinflammatory mediators that are themselves regulated by the nuclear factor κB (NF-κB) family of transcription factors. In this context, we previously reported that the RelA NF-κB subunit represses transcription and mRNA expression of the proquiescent Gαs gene in human myometrial cells following stimulation with the proinflammatory cytokine TNF. In the present study, we initially defined the functional consequence of this on myometrial contractility. Here we show that, contrary to our initial expectations, TNF did not induce myometrial contractility but did inhibit the relaxation produced by the histone deacetylase inhibitor trichostatin A, an effect that in turn was abolished by the NF-κB inhibitor N4-[2-(4-phenoxyphenyl)ethyl]-4,6-quinazolinediamine. This result suggested a role for TNF in regulating Gαs expression via activating NF-κB and modifying histone acetylation associated with the promoter region of the gene. In this context, we show that the −837 to −618 region of the endogenous Gαs promoter is occupied by cAMP-response element-binding protein (CREB), Egr-1, and Sp1 transcription factors and that CREB-binding protein (CBP) transcriptional complexes form within this region where they induce histone acetylation, resulting in increased Gαs expression. TNF, acting via NF-κB, did not change the levels of CREB, Sp1, or Egr-1 binding to the Gαs promoter, but it induced a significant reduction in the level of CBP. This was associated with increased levels of histone deacetylase-1 and surprisingly an increase in H4K8 acetylation. The latter is discussed herein

    Characterization of a rat myosin alkali light chain gene expressed in ventricular and slow twitch skeletal muscles.

    No full text
    Mammalian cardiac muscle contains two myosin alkali light chains: 1) the atrial light chain (MLC1A), and 2) the ventricular light chain (MLC1V) predominantly expressed either in the atrium or in the ventricle. In this report we describe the isolation and characterization of the complete gene for rat MLC1V. The rat MLC1V gene is approximately 6.5 kb long and the mRNA coding sequences are organized in 7 different exons. Comparison of this gene sequence with other known MLC1 gene sequences revealed that the exon-intron organization is highly conserved within the MLC1 gene family. The derived protein sequence of rat MLC1V showed a higher sequence homology with human ventricular (96%) MLC1V than with rat fast skeletal MLC1f (74%), suggesting functional similarities between different MLC1V proteins. S1 nuclease mapping and primer extension analysis demonstrated that this gene is expressed only in ventricular and slow twitch skeletal muscle tissues and is transcribed from the same promoter and transcription initiation site
    corecore