49 research outputs found

    Efficient Synthesis of Passively Loaded Finite Arrays for Tunable Anomalous Reflection

    Full text link
    A design methodology for planar loaded antenna arrays is proposed to synthesize a perfect anomalous reflection into an arbitrary direction by optimizing the scattering characteristics of passively loaded array antennas. It is based on efficient and accurate prediction of the induced current distribution and the associated scattering for any given set of load impedances. For a fixed array of finite dimensions, the deflection angles can be continuously adjusted with proper tuning of each load. We study and develop anomalous reflectors as semi-finite (finite ×\times infinite) and finite planar rectangular arrays comprising printed patches with a subwavelength spacing. Anomalous reflection into an arbitrary desired angle using purely reactive loads is numerically and experimentally validated. Owing to the algebraic nature of load optimization, the design methodology may be applied to the synthesis of large-scale reflectors of practical significance.Comment: 10 pages, 10 figure

    Analysis of a wild mouse promoter variant reveals a novel role for FcÎłRIIb in the control of the germinal center and autoimmunity.

    Get PDF
    Genetic variants of the inhibitory Fc receptor FcÎłRIIb have been associated with systemic lupus erythematosus in humans and mice. The mechanism by which Fcgr2b variants contribute to the development of autoimmunity is unknown and was investigated by knocking in the most commonly conserved wild mouse Fcgr2b promoter haplotype, also associated with autoimmune-prone mouse strains, into the C57BL/6 background. We found that in the absence of an AP-1-binding site in its promoter, FcÎłRIIb failed to be up-regulated on activated and germinal center (GC) B cells. This resulted in enhanced GC responses, increased affinity maturation, and autoantibody production. Accordingly, in the absence of FcÎłRIIb activation-induced up-regulation, mice developed more severe collagen-induced arthritis and spontaneous glomerular immune complex deposition. Our data highlight how natural variation in Fcgr2b drives the development of autoimmune disease. They also show how the study of such variants using a knockin approach can provide insight into immune mechanisms not possible using conventional genetic manipulation, in this case demonstrating an unexpected critical role for the activation-induced up-regulation of FcÎłRIIb in controlling affinity maturation, autoantibody production, and autoimmunity

    Transformation of Biomass into Commodity Chemicals Using Enzymes or Cells

    Full text link

    An efficient chaotic salp swarm optimization approach based on ensemble algorithm for class imbalance problems

    No full text
    Class imbalance problems have attracted the research community, but a few works have focused on feature selection with imbalanced datasets. To handle class imbalance problems, we developed a novel fitness function for feature selection using the chaotic salp swarm optimization algorithm, an efficient meta-heuristic optimization algorithm that has been successfully used in a wide range of optimization problems. This paper proposes an AdaBoost algorithm with chaotic salp swarm optimization. The most discriminating features are selected using salp swarm optimization, and AdaBoost classifiers are thereafter trained on the features selected. Experiments show the ability of the proposed technique to find the optimal features with performance maximization of AdaBoost

    CTR1 Silencing Inhibits Angiogenesis by Limiting Copper Entry into Endothelial Cells

    Get PDF
    <div><p>Increased levels of intracellular copper stimulate angiogenesis in human umbilical vein endothelial cells (HUVECs). Copper transporter 1 (CTR1) is a copper importer present in the cell membrane and plays a major role in copper transport. In this study, three siRNAs targeting CTR1 mRNA were designed and screened for gene silencing. HUVECs when exposed to 100 ”M copper showed 3 fold increased proliferation, migration by 1.8 - fold and tube formation by 1.8 - fold. One of the designed CTR1 siRNA (si 1) at 10 nM concentration decreased proliferation by 2.5 - fold, migration by 4 - fold and tube formation by 2.8 - fold. Rabbit corneal packet assay also showed considerable decrease in matrigel induced blood vessel formation by si 1 when compared to untreated control. The designed si 1 when topically applied inhibited angiogenesis. This can be further developed for therapeutic application.</p></div
    corecore