27 research outputs found

    Computational exploration of molecular receptive fields in the olfactory bulb reveals a glomerulus-centric chemical map

    Get PDF
    © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Progress in olfactory research is currently hampered by incomplete knowledge about chemical receptive ranges of primary receptors. Moreover, the chemical logic underlying the arrangement of computational units in the olfactory bulb has still not been resolved. We undertook a large-scale approach at characterising molecular receptive ranges (MRRs) of glomeruli in the dorsal olfactory bulb (dOB) innervated by the MOR18-2 olfactory receptor, also known as Olfr78, with human ortholog OR51E2. Guided by an iterative approach that combined biological screening and machine learning, we selected 214 odorants to characterise the response of MOR18-2 and its neighbouring glomeruli. We found that a combination of conventional physico-chemical and vibrational molecular descriptors performed best in predicting glomerular responses using nonlinear Support-Vector Regression. We also discovered several previously unknown odorants activating MOR18-2 glomeruli, and obtained detailed MRRs of MOR18-2 glomeruli and their neighbours. Our results confirm earlier findings that demonstrated tunotopy, that is, glomeruli with similar tuning curves tend to be located in spatial proximity in the dOB. In addition, our results indicate chemotopy, that is, a preference for glomeruli with similar physico-chemical MRR descriptions being located in spatial proximity. Together, these findings suggest the existence of a partial chemical map underlying glomerular arrangement in the dOB. Our methodology that combines machine learning and physiological measurements lights the way towards future high-throughput studies to deorphanise and characterise structure-activity relationships in olfaction.Peer reviewe

    The immortalized UROtsa cell line as a potential cell culture model of human urothelium.

    Get PDF
    The UROtsa cell line was isolated from a primary culture of normal human urothelium through immortalization with a construct containing the SV40 large T antigen. It proliferates in serum-containing growth medium as a cell monolayer with little evidence of uroepithelial differentiation. The working hypothesis in the present study was that this cell line could be induced to differentiate and express known features of in situ urothelium if the original serum-containing growth medium was changed to a serum-free formulation. We demonstrated that the UROtsa cells could be successfully placed into a serum-free growth medium consisting of a 1:1 mixture of Dulbeco\u27s modified Eagle\u27s medium and Ham\u27s F-12 supplemented with selenium (5 ng/mL), insulin (5 microg/mL), transferrin (5 microg/mL), hydrocortisone (36 ng/mL), triiodothyronine (4 pg/mL), and epidermal growth factor (10 ng/mL). Under serum-free growth conditions, confluent UROtsa cells were shown by light microscopy to produce raised, three-dimensional structures. Routine ultrastructural examination disclosed these three-dimensional areas to consist of a stratified layer of cells that strongly resembled in situ urothelium. The cells displayed numerous desmosomal connections, complex interactions of the lateral membranes, and abundant intermediate filaments within the cytoplasm. Freeze fracture analysis demonstrated that the cells possessed tight-junction sealing strands and gap junctions. The overall morphology was most consistent with that found in the intermediate layers of in situ urothelium. The basal expression patterns of the metallothionein (MT) and heat shock proteins 27, 60, and 70 were determined in these cells, and expression was in agreement with that known to occur for in situ urothelium. The cells were also successfully tested for their ability to be stably transfected using expression vectors containing the MT-3 or MT-2A genes. The findings suggest that the UROtsa cells grown with a serum-free medium could be a valuable adjunct for studying environmental insult to the human urothelium in general and for the stress response in particular

    Multisensory and Motor Representations in Rat Oral Somatosensory Cortex

    Get PDF
    Abstract In mammals, a complex array of oral sensors assess the taste, temperature and haptic properties of food. Although the representation of taste has been extensively studied in the gustatory cortex, it is unclear how the somatosensory cortex encodes information about the properties of oral stimuli. Moreover, it is poorly understood how different oral sensory modalities are integrated and how sensory responses are translated into oral motor actions. To investigate whether oral somatosensory cortex processes food-related sensations and movements, we performed in vivo whole-cell recordings and motor mapping experiments in rats. Neurons in oral somatosensory cortex showed robust post-synaptic and sparse action potential responses to air puffs. Membrane potential showed that cold water evoked larger responses than room temperature or hot water. Most neurons showed no clear tuning of responses to bitter, sweet and neutral gustatory stimuli. Finally, motor mapping experiments with histological verification revealed an initiation of movements related to food consumption behavior, such as jaw opening and tongue protrusions. We conclude that somatosensory cortex: (i) provides a representation of the temperature of oral stimuli, (ii) does not systematically encode taste information and (iii) influences orofacial movements related to food consummatory behavior

    Downscaling Climate Change Impacts, Socio-Economic Implications and Alternative Adaptation Pathways for Islands and Outermost Regions

    Get PDF
    This book provides a comprehensive overview of the future scenarios of climate change and management concerns associated with climate change impacts on the blue economy of European islands and outermost regions. The publication collects major findings of the SOCLIMPACT project’s research outcomes, aiming to raise social awareness among policy-makers and industry about climate change consequences at local level, and provide knowledge-based information to support policy design, from local to national level. This comprehensive book will also assist students, scholars and practitioners to understand, conceptualize and effectively and responsibly manage climate change information and applied research. This book provides invaluable material for Blue Growth Management, theory and application, at all levels. This first edition includes up-to-date data, statistics, references, case material and figures of the 12 islands case studies. ¨Downscaling climate change impacts, socio-economic implications and alternative adaptation pathways for Islands and Outermost Regions¨ is a must-read book, given the accessible style and breadth and depth with which the topic is dealt. The book is an up-to-date synthesis of key knowledge on this area, written by a multidisciplinary group of experts on climate and economic modelling, and policy design

    Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes

    Get PDF
    Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR < 60 mL/min/1.73 m2) or eGFR reduction > 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR < 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR > 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening

    Long term functional plasticity of sensory inputs mediated by olfactory learning

    Get PDF
    Contains fulltext : 131894.pdf (publisher's version ) (Open Access

    Design Space Exporation for a UMTS front end exploiting Analog Platforms

    No full text
    universal mobile telecommunication system (UMTS) front end design is challenging because of the need to optimize power while satisfying a very high dynamic range requirement. Dealing with this design problem at the transistor level does not allow exploring efficiently the design space, while using behavioral models does not allow taking into consideration important second-order effects. We present an extension of the platform-based design methodology originally developed for digital systems to the analog domain to conjugate the need of higher levels of abstraction to deal with complexity as well as the one of capturing enough of the actual circuit-level characteristics to deal with second order effects. We show how this methodology applied to the UMTS front-end design yields power savings as large as 47% versus an original hand optimized design
    corecore