197 research outputs found

    Effects of Intracellular Calcium and Actin Cytoskeleton on TCR Mobility Measured by Fluorescence Recovery

    Get PDF
    Background: The activation of T lymphocytes by specific antigen is accompanied by the formation of a specialized signaling region termed the immunological synapse, characterized by the clustering and segregation of surface molecules and, in particular, by T cell receptor (TCR) clustering. Methodology/Principal Findings: To better understand TCR motion during cellular activation, we used confocal microscopy and photo-bleaching recovery techniques to investigate the lateral mobility of TCR on the surface of human T lymphocytes under various pharmacological treatments. Using drugs that cause an increase in intracellular calcium, we observed a decrease in TCR mobility that was dependent on a functional actin cytoskeleton. In parallel experiments measurement of filamentous actin by FACS analysis showed that raising intracellular calcium also causes increased polymerization of the actin cytoskeleton. These in vitro results were analyzed using a mathematical model that revealed effective binding parameters between TCR and the actin cytoskeleton. Conclusion/Significance: We propose, based on our results, that increase in intracellular calcium levels leads to actin polymerization and increases TCR/cytoskeleton interactions that reduce the overall mobility of the TCR. In a physiological setting, this may contribute to TCR re-positioning at the immunological synapse

    SentiBench - a benchmark comparison of state-of-the-practice sentiment analysis methods

    Get PDF
    In the last few years thousands of scientific papers have investigated sentiment analysis, several startups that measure opinions on real data have emerged and a number of innovative products related to this theme have been developed. There are multiple methods for measuring sentiments, including lexical-based and supervised machine learning methods. Despite the vast interest on the theme and wide popularity of some methods, it is unclear which one is better for identifying the polarity (i.e., positive or negative) of a message. Accordingly, there is a strong need to conduct a thorough apple-to-apple comparison of sentiment analysis methods, \textit{as they are used in practice}, across multiple datasets originated from different data sources. Such a comparison is key for understanding the potential limitations, advantages, and disadvantages of popular methods. This article aims at filling this gap by presenting a benchmark comparison of twenty-four popular sentiment analysis methods (which we call the state-of-the-practice methods). Our evaluation is based on a benchmark of eighteen labeled datasets, covering messages posted on social networks, movie and product reviews, as well as opinions and comments in news articles. Our results highlight the extent to which the prediction performance of these methods varies considerably across datasets. Aiming at boosting the development of this research area, we open the methods' codes and datasets used in this article, deploying them in a benchmark system, which provides an open API for accessing and comparing sentence-level sentiment analysis methods

    Identification of distinct cytotoxic granules as the origin of supramolecular attack particles in T lymphocytes

    Get PDF
    Cytotoxic T lymphocytes (CTL) kill malignant and infected cells through the directed release of cytotoxic proteins into the immunological synapse (IS). The cytotoxic protein granzyme B (GzmB) is released in its soluble form or in supramolecular attack particles (SMAP). We utilize synaptobrevin2-mRFP knock-in mice to isolate fusogenic cytotoxic granules in an unbiased manner and visualize them alone or in degranulating CTLs. We identified two classes of fusion-competent granules, single core granules (SCG) and multi core granules (MCG), with different diameter, morphology and protein composition. Functional analyses demonstrate that both classes of granules fuse with the plasma membrane at the IS. SCG fusion releases soluble GzmB. MCGs can be labelled with the SMAP marker thrombospondin-1 and their fusion releases intact SMAPs. We propose that CTLs use SCG fusion to fill the synaptic cleft with active cytotoxic proteins instantly and parallel MCG fusion to deliver latent SMAPs for delayed killing of refractory targets

    Clonal Deletion Prunes but Does Not Eliminate Self-Specific αβ CD8+ T Lymphocytes

    Get PDF
    SummaryIt has long been thought that clonal deletion efficiently removes almost all self-specific T cells from the peripheral repertoire. We found that self-peptide MHC-specific CD8+ T cells in the blood of healthy humans were present in frequencies similar to those specific for non-self antigens. For the Y chromosome-encoded SMCY antigen, self-specific T cells exhibited only a 3-fold lower average frequency in males versus females and were anergic with respect to peptide activation, although this inhibition could be overcome by a stronger stimulus. We conclude that clonal deletion prunes but does not eliminate self-specific T cells and suggest that to do so would create holes in the repertoire that pathogens could readily exploit. In support of this hypothesis, we detected T cells specific for all 20 amino acid variants at the p5 position of a hepatitis C virus epitope in a random group of blood donors

    Molecular Mimicry of Human Cytochrome P450 by Hepatitis C Virus at the Level of Cytotoxic T Cell Recognition

    Get PDF
    Hepatitis C virus (HCV) is thought to be involved in the pathogenesis of autoimmune hepatitis (AIH) type 2, which is defined by the presence of type I antiliver kidney microsome autoantibodies directed mainly against cytochrome P450 (CYP)2D6 and by autoreactive liver infiltrating T cells. Virus-specific CD8+ cytotoxic T lymphocytes (CTLs) that recognize infected cells and contribute to viral clearance and tissue injury during HCV infection could be involved in the induction of AIH. To explore whether the antiviral cellular immunity may turn against self-antigens, we characterized the primary CTL response against an HLA-A*0201–restricted HCV-derived epitope, i.e., HCV core 178–187, which shows sequence homology with human CYP2A6 and CYP2A7 8–17. To determine the relevance of these homologies for the pathogenesis of HCV-associated AIH, we used synthetic peptides to induce primary CTL responses in peripheral blood mononuclear cells of healthy blood donors and patients with chronic HCV infection. We found that the naive CTL repertoire of both groups contains cross-reactive CTLs inducible by the HCV peptide recognizing both CYP2A6 and CYP2A7 peptides as well as endogenously processed CYP2A6 protein. Importantly, we failed to induce CTLs with the CYP-derived peptides that showed a lower capacity to form stable complexes with the HLA-A2 molecule. These findings demonstrate the potential of HCV to induce autoreactive CD8+ CTLs by molecular mimicry, possibly contributing to virus-associated autoimmunity

    A series of Fas receptor agonist antibodies that demonstrate an inverse correlation between affinity and potency

    Get PDF
    Receptor agonism remains poorly understood at the molecular and mechanistic level. In this study, we identified a fully human anti-Fas antibody that could efficiently trigger apoptosis and therefore function as a potent agonist. Protein engineering and crystallography were used to mechanistically understand the agonistic activity of the antibody. The crystal structure of the complex was determined at 1.9 Å resolution and provided insights into epitope recognition and comparisons with the natural ligand FasL (Fas ligand). When we affinity-matured the agonist antibody, we observed that, surprisingly, the higher-affinity antibodies demonstrated a significant reduction, rather than an increase, in agonist activity at the Fas receptor. We propose and experimentally demonstrate a model to explain this non-intuitive impact of affinity on agonist antibody signalling and explore the implications for the discovery of therapeutic agonists in general

    Nonparametric Simulation of Signal Transduction Networks with Semi-Synchronized Update

    Get PDF
    Simulating signal transduction in cellular signaling networks provides predictions of network dynamics by quantifying the changes in concentration and activity-level of the individual proteins. Since numerical values of kinetic parameters might be difficult to obtain, it is imperative to develop non-parametric approaches that combine the connectivity of a network with the response of individual proteins to signals which travel through the network. The activity levels of signaling proteins computed through existing non-parametric modeling tools do not show significant correlations with the observed values in experimental results. In this work we developed a non-parametric computational framework to describe the profile of the evolving process and the time course of the proportion of active form of molecules in the signal transduction networks. The model is also capable of incorporating perturbations. The model was validated on four signaling networks showing that it can effectively uncover the activity levels and trends of response during signal transduction process

    Transcriptional Upregulation of NLRC5 by Radiation Drives STING- and Interferon-Independent MHC-I Expression on Cancer Cells and T Cell Cytotoxicity.

    Get PDF
    Radiation therapy has been shown to enhance the efficacy of various T cell-targeted immunotherapies that improve antigen-specific T cell expansion, T regulatory cell depletion, or effector T cell function. Additionally, radiation therapy has been proposed as a means to recruit T cells to the treatment site and modulate cancer cells as effector T cell targets. The significance of these features remains unclear. We set out to determine, in checkpoint inhibitor resistant models, which components of radiation are primarily responsible for overcoming this resistance. In order to model the vaccination effect of radiation, we used a Listeria monocytogenes based vaccine to generate a large population of tumor antigen specific T cells but found that the presence of cells with cytotoxic capacity was unable to replicate the efficacy of radiation with combination checkpoint blockade. Instead, we demonstrated that a major role of radiation was to increase the susceptibility of surviving cancer cells to CD8+ T cell-mediated control through enhanced MHC-I expression. We observed a novel mechanism of genetic induction of MHC-I in cancer cells through upregulation of the MHC-I transactivator NLRC5. These data support the critical role of local modulation of tumors by radiation to improve tumor control with combination immunotherapy
    corecore