686 research outputs found

    Properties of the close binary and circumbinary torus of the Red Rectangle

    Get PDF
    New diffraction-limited speckle images of the Red Rectangle in the wavelength range 2.1--3.3 microns with angular resolutions of 44--68 mas and previous speckle images at 0.7--2.2 microns revealed well-resolved bright bipolar outflow lobes and long X-shaped spikes originating deep inside the outflow cavities. This set of high-resolution images stimulated us to reanalyze all infrared observations of the Red Rectangle using our two-dimensional radiative transfer code. The new detailed modeling, together with estimates of the interstellar extinction in the direction of the Red Rectangle enabled us to more accurately determine one of the key parameters, the distance D=710 pc with model uncertainties of 70 pc, which is twice as far as the commonly used estimate of 330 pc. The central binary is surrounded by a compact, massive (M=1.2 Msun), very dense dusty torus with hydrogen densities reaching n_H=2.5x10^12 cm^-3 (dust-to-gas mass ratio rho_d/rho~0.01). The bright component of the spectroscopic binary HD 44179 is a post-AGB star with mass M*=0.57 Msun, luminosity L*=6000 Lsun, and effective temperature T*=7750 K. Based on the orbital elements of the binary, we identify its invisible component with a helium white dwarf with Mwd~0.35 Msun, Lwd~100 Lsun, and Twd~6x10^4 K. The hot white dwarf ionizes the low-density bipolar outflow cavities inside the dense torus, producing a small HII region observed at radio wavelengths. We propose an evolutionary scenario for the formation of the Red Rectangle nebula, in which the binary initially had 2.3 and 1.9 Msun components at a separation of 130 Rsun. The nebula was formed in the ejection of a common envelope after Roche lobe overflow by the present post-AGB star.Comment: 20 pages, 10 figures, accepted by Astronomy and Astrophysics, also available at http://www.mpifr-bonn.mpg.de/div/ir-interferometry/publications.htm

    Direct Detection of the Brown Dwarf GJ 802B with Adaptive Optics Masking Interferometry

    Get PDF
    We have used the Palomar 200" Adaptive Optics (AO) system to directly detect the astrometric brown dwarf GJ 802B reported by Pravdo et al. 2005. This observation is achieved with a novel combination of aperture masking interferometry and AO. The dynamical masses are 0.175±\pm0.021 M⊙_\odot and 0.064±\pm0.032 M⊙_\odot for the primary and secondary respectively. The inferred absolute H band magnitude of GJ 802B is MH_H=12.8 resulting in a model-dependent Teff_\mathrm{eff} of 1850 ±\pm 50K and mass range of 0.057--0.074 M⊙_\odot.Comment: 4 Pages, 5 figures, emulateapj format, submitted to ApJ

    Effect of spectacular reflection on out‐of‐plane ultrasonographic images reconstructed from three‐dimensional data sets.

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135445/1/jum2000196391.pd

    Unveiling the near-infrared structure of the massive-young stellar object NGC 3603 IRS 9A with sparse aperture masking and spectroastrometry

    Full text link
    Contemporary theory holds that massive stars gather mass during their initial phases via accreting disk-like structures. However, conclusive evidence for disks has remained elusive for the most massive young objects. This is mainly due to significant observational challenges. Incisive studies, even targeting individual objects, are therefore relevant to the progression of the field. NGC 3603 IRS 9A* is a young massive stellar object still surrounded by an envelope of molecular gas. Previous mid-infrared observations with long-baseline interferometry provided evidence for a disk of 50 mas diameter at its core. This work aims at a comprehensive study of the physics and morphology of IRS 9A at near-infrared wavelengths. New sparse aperture masking interferometry data taken with NACO/VLT at Ks and Lp filters were obtained and analysed together with archival CRIRES spectra of the H2 and BrG lines. The calibrated visibilities recorded at Ks and Lp bands suggest the presence of a partially resolved compact object of 30 mas at the core of IRS 9A, together with the presence of over-resolved flux. The spectroastrometric signal of the H2 line shows that this spectral feature proceeds from the large scale extended emission (300 mas) of IRS 9A, while the BrG line appears to be formed at the core of the object (20 mas). This scenario is consistent with the brightness distribution of the source for near- and mid-infrared wavelengths at various spatial scales. However, our model suffers from remaining inconsistencies between SED modelling and the interferometric data. Moreover, the BrG spectroastrometric signal indicates that the core of IRS 9A exhibits some form of complexity such as asymmetries in the disk. Future high-resolution observations are required to confirm the disk/envelope model and to flesh out the details of the physical form of the inner regions of IRS 9A.Comment: Accepted to be published in Astronomy & Astrophysics, 13 pages, 14 figure

    Diffraction-limited polarimetric imaging of protoplanetary disks and mass-loss shells with VAMPIRES

    Get PDF
    Both the birth and death of a stellar system are areas of key scientific importance. Whether it's understanding the process of planetary formation in a star's early years, or uncovering the cause of the enormous mass-loss that takes place during a star's dying moments, a key to scientific understanding lies in the inner few AU of the circumstellar environment. Corresponding to scales of 10s of milli-arcseconds, these observations pose a huge technical challenge due to the high angular-resolutions and contrasts required. A major stumbling block is the problem of the Earth's own atmospheric turbulence. The other difficulty is that precise calibration is required to combat the extremely high contrast ratios and high resolutions faced. By taking advantage of the fact that starlight scattered by dust in the circumstellar region is polarized, differential polarimetry can help achieve this calibration. Spectral features can also be utilized

    The Angular Diameter and Fundamental Parameters of Sirius A

    Full text link
    The Sydney University Stellar Interferometer (SUSI) has been used to make a new determination of the angular diameter of Sirius A. The observations were made at an effective wavelength of 694.1 nm and the new value for the limb-darkened angular diameter is 6.048 +/- 0.040mas (+/-0.66%). This new result is compared with previous measurements and is found to be in excellent agreement with a conventionally calibrated measurement made with the European Southern Observatory's Very Large Telescope Interferometer (VLTI) at 2.176 microns (but not with a second globally calibrated VLTI measurement). A weighted mean of the SUSI and first VLTI results gives the limb-darkened angular diameter of Sirius A as 6.041 +/- 0.017mas (+/-0.28%). Combination with the Hipparcos parallax gives the radius equal to 1.713 +/- 0.009R_sun. The bolometric flux has been determined from published photometry and spectrophotometry and, combined with the angular diameter, yields the emergent flux at the stellar surface equal to (5.32+/- 0.14)x10^8 Wm^-2 and the effective temperature equal to 9845 +/- 64 K. The luminosity is 24.7 +/- 0.7 L_sun.Comment: Accepted for publication in PAS

    Modeling Forbidden Line Emission Profiles from Colliding Wind Binaries

    Full text link
    This paper presents calculations for forbidden emission line profile shapes arising from colliding wind binaries. The main application is for systems involving a Wolf-Rayet (WR) star and an OB star companion. The WR wind is assumed to dominate the forbidden line emission. The colliding wind interaction is treated as an archimedean spiral with an inner boundary. Under the assumptions of the model, the major findings are as follows. (a) The redistribution of the WR wind as a result of the wind collision is not flux conservative but typically produces an excess of line emission; however, this excess is modest at around the 10% level. (b) Deviations from a flat-top profile shape for a spherical wind are greatest for viewing inclinations that are more nearly face-on to the orbital plane. At intermediate viewing inclinations, profiles display only mild deviations from a flat-top shape. (c) The profile shape can be used to constrain the colliding wind bow shock opening angle. (d) Structure in the line profile tends to be suppressed in binaries of shorter periods. (e) Obtaining data for multiple forbidden lines is important since different lines probe different characteristic radial scales. Our models are discussed in relation to ISO data for WR 147 and gamma Vel (WR11). The lines for WR 147 are probably not accurate enough to draw firm conclusions. For gamma Vel, individual line morphologies are broadly reproducible but not simultaneously so for the claimed wind and orbital parameters. Overall, the effort demonstrates how lines that are sensitive to the large-scale wind can help to deduce binary system properties and provide new tests of numerical simulations.Comment: to appear in MNRA
    • 

    corecore