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A Complex Relationship between Immunity and Metabolism in

Drosophila Diet-Induced Insulin Resistance

Laura Palanker Musselman,® Jill L. Fink,® Ana R. Grant,<* Jared A. Gatto,? Bryon F. Tuthill Il,2 Thomas J. Baranski®

2Binghamton University, Department of Biological Sciences, Binghamton, New York, USA

bWashington University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism,
and Lipid Research, St. Louis, Missouri, USA

Bioinformatics Core, University of Michigan, Ann Arbor, Michigan, USA

ABSTRACT Both systemic insulin resistance and tissue-specific insulin resistance
have been described in Drosophila and are accompanied by many indicators of met-
abolic disease. The downstream mediators of insulin-resistant pathophysiology re-
main unclear. We analyzed insulin signaling in the fat body studying loss and gain
of function. When expression of the sole Drosophila insulin receptor (InR) was re-
duced in larval fat bodies, animals exhibited developmental delay and reduced size
in a diet-dependent manner. Fat body InR knockdown also led to reduced survival
on high-sugar diets. To look downstream of InR at potential mediators of insulin re-
sistance, transcriptome sequencing (RNA-seq) studies in insulin-resistant fat bodies
revealed differential expression of genes, including those involved in innate immu-
nity. Obesity-associated insulin resistance led to increased susceptibility of flies to in-
fection, as in humans. Reduced innate immunity was dependent on fat body InR ex-
pression. The peptidoglycan recognition proteins (PGRPs) PGRP-SB2 and PGRP-SC2
were selected for further study based on differential expression studies. Downregu-
lating PGRP-SB2 selectively in the fat body protected animals from the deleterious
effects of overnutrition, whereas downregulating PGRP-SC2 produced InR-like pheno-
types. These studies extend earlier work linking the immune and insulin signaling
pathways and identify new targets of insulin signaling that could serve as potential
drug targets to treat type 2 diabetes.

KEYWORDS Drosophila, diabetes, innate immunity, insulin receptor, metabolism

nsulin signaling plays an essential role in the control of glucose homeostasis in all

animals. After a sugary meal, insulin or insulin-like peptides are secreted into the
circulation. These small-peptide hormones bind to (and activate) a highly conserved
insulin receptor (InR) in a variety of target tissues. InR activation leads to a signal
transduction cascade, including phosphorylation of the kinase Akt and consequent
inactivation of the transcription factor FOXO, among other targets. Still, many insulin
targets remain unknown. Depending on the target tissue, InR activation can promote
glucose uptake, lipogenesis, and glycogen synthesis and can also regulate mitochon-
drial size and number, cell size, cell division, and differentiation (1-7).

Type 2 diabetes (T2D) is characterized by systemic insulin resistance and exhibits a
range of pathophysiology in various target tissues. T2D patients are at increased risk for
cardiovascular disease, nonalcoholic fatty liver disease, neuropathy, nephropathy, and
retinopathy, although the mechanisms underlying these comorbidities are not fully
understood. Another comorbidity in some T2D patients is increased inflammation. Type
2 diabetics exhibit increased infiltration of macrophages into adipose tissue (8, 9) and
increased susceptibility to infection. Conversely, patients with some chronic infections
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are more likely to develop insulin resistance (10, 11). To reduce the incidence of these
conditions, it is important to understand the genes linking these two pathways.

Drosophila is an efficient and highly sensitive model organism in which to study
insulin signaling. Flies express only one InR and one insulin receptor substrate (encoded
by chico), which are required for both growth and metabolic homeostasis. Insulin-
deficient Drosophila and insulin-resistant Drosophila exhibit reduced size, develop-
mental delay, and hyperglycemia and serve as models of type 1 and type 2 diabetes,
respectively (12-14). In Drosophila, as in other organisms, a complex relationship
between insulin signaling and the immune response exists (15-20). In some settings,
increased immunity and increased insulin signaling promote healing: the immune
response contributes to the repair of epidermal DNA damage in an InR-dependent
manner (21), and epidermal wound healing requires InR (22). In other situations,
decreased insulin signaling promotes increased immunity. Chronic FOXO activation
(which occurs with decreased insulin signaling) leads to immune activation in the gut
(23), and chico mutants exhibit increased infection resistance and a reduced bacterial
load (24, 25). Drosophila FOXO plays a direct role by promoting antimicrobial peptide
(AMP) gene expression during starvation, whereas its paralog, Forkhead, directly pro-
motes AMP expression downstream of the target of rapamycin (TOR) (26, 27). Interest-
ingly, overexpressing a constitutively active Toll receptor in the Drosophila fat body
reduced insulin signaling (17). Therefore, the fly represents a conserved model in which
to dissect the interplay between dietary excess, insulin signaling, and the immune
response.

Diet-induced insulin resistance can be produced in Drosophila by chronic overfeed-
ing using high-calorie diets (28-32). High-sugar (HS)-fed larvae and adult flies develop
obesity, dyslipidemia, insulin resistance, decreased fertility, and cardiovascular disease
(29-34). Previous studies showed a role for the fat body, a lipid storage tissue akin to
mammalian adipose tissue, especially in animals on HS diets. Fat bodies increased lipid
storage and developed insulin resistance after HS feeding, compared with control-fed
animals. Fat body lipid storage is required for tolerance of HS feeding; genetically lean
animals typically exhibit poor survival on HS diets (33, 34). However, roles for the fat
body other than lipid storage have been poorly characterized in the context of
overnutrition.

In this work, we show a novel role for insulin in controlling the fat body’s immune
response in the setting of overnutrition. Diet and genotype were manipulated to probe
the insulin signaling pathway in the fly. First, a genomic approach identified potential
mediators of insulin signaling in the fat body and found a number of differentially
expressed (DE) stress, immune, and metabolic genes as well as the transcription factor
Seven-up. We show that fat body insulin signaling controls circulating glucose homeo-
stasis, fat storage, and the immune response. In addition, the immune response exerts
a surprising influence on diabetes-like phenotypes. Our data support a model in which
the fat body serves to balance the competing pathways of inflammation and insulin
signaling during overnutrition.

RESULTS

Fat body insulin signaling promotes glucose clearance and lipid homeostasis.
Previously, we and others showed that HS feeding leads to insulin resistance in the
Drosophila fat body (30-32). Therefore, we took a genetic approach to study the role of
fat body insulin signaling during overnutrition by targeting the sole Drosophila InR. We
used the GAL4/upstream activation sequence (GAL4/UAS) system to elicit transgenic
RNA interference (RNAI) in the larval fat body using r4-GAL4 (38). Fat body InR
knockdown phenotypes (called InR' throughout) were markedly affected by dietary
sugar concentrations. A 1 M concentration of sucrose was almost entirely lethal to
r4-GAL4; UAS-InR flies (Fig. 1A). Therefore, we focused on 0.7 M sucrose (HS) for our InR!
overnutrition studies. On control diets (0.15 M sucrose), r4-GAL4; UAS-InR’ transgenic
larvae showed no significant difference in hemolymph glucose concentrations when
compared with w’78; r4-GAL4 genetically matched controls (Fig. 1B). Upon HS feeding,
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FIG 1 Fat body loss of InR exacerbates type 2 diabetes-like phenotypes in overfed Drosophila. r4-GAL4 was used to express double-stranded RNA
(dsRNA) encoding a UAS-dependent RNAI transgene, targeting InR in the fat body. (A) Wild-type controls survive on 1 M sucrose, whereas very
few fat body InR' adults eclose after rearing on this HS diet (n = 6 for each genotype). (B) HS (0.7 M) feeding leads to hyperglycemia in fat body
InR loss-of-function wandering third-instar larvae, compared with controls. No effect on hemolymph glucose concentration is observed when InR
is reduced in fat bodies of larvae fed the control diet (0.15 M sucrose) (n = 36 for each genotype and diet combination). (C) Fat body reduction
of InR expression eliminates insulin-stimulated Akt phosphorylation at serine 505, as expected (n = 9 for each genotype). (D) HS (0.7 M) feeding
leads to developmental delay in fat body InR loss-of-function larvae, compared with controls. No developmental delay occurs when InR' larvae
are fed the control diet (0.15 M sucrose) (n = 3 for each genotype and diet combination). (E) InR RNAi in fat body reduces whole-animal size in
both control and 0.7 M HS-fed wandering third-instar larvae (n = 10 for each genotype and diet combination). (F) No difference in whole-animal
triacylglycerides (TAG) is observed upon fat body InR RNAI after rearing on the 0.7 M HS diet (n = 11 for each genotype). (G to I) Nile Red staining
of lipid storage droplets in the larval fat body shows increased droplet size upon fat body InR RNAi, compared with controls. Bars, 50 wm.
Thirty-nine different fat body fields were measured for each genotype and diet combination. A two-tailed Student t test was used to derive
P values. Error bars show standard errors of the means (SEM).

however, r4-GAL4; UAS-InR! larvae exhibited significant increases in hemolymph glucose
compared with w'’’8; r4-GAL4 larvae (Fig. 1B). Increased hemolymph glucose or fly
“hyperglycemia” correlated with reduced Akt phosphorylation, a downstream marker of
InR signaling, in insulin-stimulated fat bodies from r4-GAL4; UAS-InR' larvae fed HS diets
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A. Genetics and sample preparation
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FIG 2 Comparison of InR loss- and gain-of function strategies. (A) Fat body loss- and gain-of-function
strategies differed in stage and duration. (Left) Constitutively active InR was expressed during the
mid-third instar via a heat shock promoter and was compared to InR in heat-shocked wild-type (yw~)
controls. Samples used for RNA-seq consisted of yw~ or InR“ fat bodies isolated from larvae actively
feeding on control (5% sugar) diets for 6 h after the heat shock. (Right) InR loss-of-function was elicited
by dsRNA (RNA/) expressed in the fat body throughout larval development on a 0.7 M sucrose diet,
compared to fat body driver r4-GAL4 crossed with w78 controls. Control or chronic InR! fat bodies were
isolated from wandering third-instar larvae, when animals could be synchronized due to the develop-
mental delay of r4-GAL4; UAS-InR' larvae (n = 3 for each genotype). (B) Overlap between the data sets
generated by the two strategies, i.e., the common set of InR target genes that we considered to be of
interest for follow-up studies. DAVID was used to identify potentially interesting genes and pathways in
this overlap.

(Fig. 1C). The r4-GAL4; UAS-InR' larvae exhibited a significant developmental delay on
HS diets (Fig. 1D) as well as a decrease in stage-matched weights on both diets (Fig. 1E),
consistent with previously reported phenotypes in insulin-resistant larvae (13, 14, 30,
39). Although no difference in percent body fat was observed (Fig. 1F), fat body lipid
droplet size increased when InR was reduced (Fig. 1G, H, and I). Thus, decreased insulin
signaling in the fat body is sufficient to exacerbate type 2 diabetes-like phenotypes in
Drosophila challenged with overnutrition.

A genomic approach to identify molecular pathways downstream of InR.
Because defects in peripheral tissue insulin signaling during caloric overload are
associated with a variety of complications, we set out to discover novel factors or
effectors downstream of the insulin receptor. Taking a differential expression approach,
we characterized the transcriptomes of control and UAS-InR’ fat bodies using transcrip-
tome sequencing (RNA-seq). Conversely, we measured differential expression in control
and UAS-InRA fat bodies with transient expression of a constitutively active mutant InR
(InRA1325D) (5) (Fig. 2A). Control and InR™-expressing fat bodies were collected from
wandering third-instar larvae after chronic 0.7 M sucrose HS feeding or control feeding,
whereas constitutively activated-InR-expressing fat bodies were isolated at 6 h after an
activating heat shock in hs-GAL4; UAS-InRA mid-L3 larvae. By using different para-
digms, short term and long term, we predicted that we would identify a core group of
insulin-dependent target genes to use as candidates for further testing. Ribo-Zero
library prep and lllumina Hi-Seq sequencing followed by genome alignment and EdgeR
analysis provided a list of genes exhibiting significant differential expression in each
paradigm (Fig. 2B; see also Tables S1 to S3 in the supplemental material). Five hundred
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twenty-seven genes were differentially expressed in fat bodies after transient InR
activation, with a false-discovery rate of less than 5%. One thousand six hundred
eighty-four genes were differentially expressed in InR' fat bodies from larvae fed HS
diets, whereas only 176 genes were differentially expressed in InR' fat bodies from
larvae on control diets, consistent with the increased severity of phenotypes observed
on HS versus control feeding in these larvae. To refine our list of target genes, we
considered the overlap between the HS-fed InR' and the InR“* differentially expressed
(DE) gene data sets, which consisted of 220 genes (see Table S4 in the supplemental
material). Some of these overlapping DE genes encode endoplasmic reticulum (ER)
stress response proteins and other proteins with roles in electron transfer as well as
in nuclear hormone receptor and adipokinetic hormone (Akh) signaling (Table 1). In
particular, AkhR expression was increased (1.8-fold) in InR’ fat bodies and decreased
(—2.3-fold) in InR“A fat bodies. Likewise, expression of the nuclear receptor gene
Seven-up (Svp) was increased (2.4-fold) in InR' fat bodies and decreased (—1.8-fold) in
InR“ fat bodies (Table S4). Mechanistic studies have established important roles for
both AkhR and Svp in fat body metabolic homeostasis (40), suggesting that our list of
targets contains physiologically relevant regulators of insulin signaling in the fat body.
Other pathways were highlighted by gene ontology analysis using DAVID (36), includ-
ing redox biochemistry, metabolism, membrane transport, and the immune response
(Fig. 2B). Targets of InR included several metabolic enzymes and translational regula-
tors, similar to what others have shown previously (41-43) (Tables 1 and S4).

As in humans, ER stress may play a role in HS-induced hyperglycemia and
insulin resistance. Focusing on the set of 83 genes that were coordinately regulated
with increased expression in HS-fed, InR' fat bodies and reduced expression when InR
was constitutively active, we noticed two genes encoding proteins with roles in the ER
stress response. ER oxidoreductin 1-like (encoded by CG1333/Ero1L) helps the ER make
disulfide bonds and was increased to 235% in InR' fat bodies and reduced to 46% in
InR“A fat bodies (Table 1). P58IPK (encoded by (CG8286) acts via protein-protein
interactions with ER stress kinases and was increased to 198% in InR' fat bodies and
reduced to 39% in InR“A fat bodies (Table 1). Because these ER stress response genes
were transcriptionally upregulated in previous studies by the ER stressor tunicamycin
(44) and ER stress is associated with type 2 diabetes in mammalian adipose tissues
(45-47), we set out to define a role for ER stress in HS-induced fly diabetes-like pheno-
types. To test a role for ER stress under HS feeding conditions, we used 0.8 M sucrose, which
was the maximum that the larvae could tolerate. This 0.8 M HS diet was supplemented with
ER stress relief to look for physiological improvements in larvae. The chemical chaperone
4-phenylbutyrate (PBA) was added to fly food at 5 mM, a concentration previously shown
to extend life span and ameliorate ER stress in Drosophila (48, 49). Larvae were reared to
maturity on 0.8 M sucrose HS plus vehicle or PBA food, and we measured insulin-
resistant phenotypes. A modest but significant reduction in hemolymph glucose was
observed with PBA feeding, consistent with an improvement in insulin signaling
(Fig. 3A). In addition, triacylglycerides (TAG) increased modestly in males fed PBA in
addition to the 0.8 M HS diet (Fig. 3B). However, no differences in weight were observed
between control and PBA-fed HS larvae (Fig. 3C) and we saw no change in insulin
signaling at the PO,-Akt level in isolated fat bodies (Fig. 3D). Next, we used the protein
kinase R-like ER kinase (PERK) inhibitor GSK2606414, which has previously been shown
to reduce ER stress and to have therapeutic value via dietary supplementation at 10 uM
in flies (50, 51). PERK functions in the ER stress response by phosphorylating the «
subunit of eukaryotic initiation factor 2 (elF2«) and thereby inhibits translation (52, 53).
A modest improvement in hemolymph glucose concentrations was observed in larvae
reared on GSK2606414-supplemented food (Fig. 3E). No significant improvements in
growth or TAG homeostasis were detected, although a trend toward reduced TAG
concentrations was observed (Fig. 3F and G), consistent with a role for ER stress in
HS-induced metabolic disease. Finally, we overexpressed an activated form of the
transcription factor X-box binding protein 1 (Xbp1s), which protects against ER stress
(54, 55), in the fat body. We hypothesized that this might protect tissues from
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TABLE 1 Differential expression in fat bodies undergoing short-term InR activation (InR“*) or chronic InR knockdown (InRi)@

Molecular and Cellular Biology

Fold change
Gene function and product abbreviation Gene product full name InRCA/+ InR/+
ER stress
P58IPK P58IPK —2.56 1.98
ErolL Endoplasmic reticulum oxidoreductin 1-like -2.18 2.35
Hsp70Bb Heat shock protein 70Bb 5.48 1.91
Immune response, antimicrobial peptides
Dif Dorsal-related immunity factor -1.95 3.45
AttA Attacin-A —4.65 537
AttB Attacin-B —7.19 6.01
IM3 Immune-induced molecule 3 —3.26 377.90
DptB Diptericin B —4.97 2.71
CYP450 enzymes
Cyp28a5 Cyp28a5 —2.56 —2.03
Cyp28d1 Cyp28d1 —255 —1.60
Cyp309al Cyp309a1 —3.37 —-2.79
Cyp4d1 Cytochrome P450-4d1 —2.53 —3.06
Cyp4di4 Cyp4di4 —-2.38 1.97
Cyp4g1 Cytochrome P450-4g1 —2.75 240
Cyp4p1 Cytochrome P450-4p1 —3.68 1.98
Cyp6a22 Cyp6a22 —3.03 3.08
Cyp6d5 Cyp6d5 —2.02 -2.12
Cypé6t1 Cypé6t1 525 —3.21
Cyp9b1 Cytochrome P450-9b1 —3.36 2.68
Cyt-b5-r Cytochrome bs-related —2.32 —1.59
Metabolic enzymes, inversely regulated
IP3K2 Inositol 1,4,5-triphosphate kinase 2 —2.04 1.76
Odc2 Ornithine decarboxylase 2 —2.21 1.73
Pdk Pyruvate dehydrogenase kinase —-1.91 1.61
Acox57D-p Acyl coenzyme A oxidase —2.01 2.00
Ugt58Fa UDP-glucuronosyltransferase —2.07 2.31
Pepck Phosphoenolpyruvate carboxykinase —2.53 245
ATPCL ATP citrate lyase 1.77 —1.87
Fbp2 Alcohol dehydrogenase 15.53 —1.83
CG339%4 Putative fatty acid transporter 2.06 —2.45
CG1969 Glucosamine-phosphate N-acetyltransferase 1 2.69 —1.84
CG30463 Polypeptide N-acetylgalactosaminyltransferase 233 —2.22
Metabolic enzymes, coordinately regulated
Sodh-1 Sorbitol dehydrogenase 1 —2.67 —28.65
Tpi Triose phosphate isomerase —-2.09 —3.06
Pgm Phosphogluconate mutase —2.08 —2.23
Spat Serine pyruvate aminotransferase —-2.13 —2.36
Got2 Glutamate/oxaloacetate transaminase 2 —233 —2.52
Mdh2 Malate dehydrogenase 2 —-1.92 —1.85
Mdh1 Malate dehydrogenase 1 =211 —1.56
Aldh Aldehyde dehydrogenase —2.41 -1.76
AKHR Adipokinetic hormone receptor —2.30 1.83
Ribosome
RpL23 Ribosomal protein L23 —1.84 —1.62
RpL24 Ribosomal protein L24 —2.05 —1.52
RpLP2 Ribosomal protein LP2 -2.10 —2.26
RpL4 Ribosomal protein L4 —2.03 1.65

9InR target genes in the fat body indicate conserved biology between human and fly insulin resistance, including ER stress, the immune response, redox biochemistry,

translation, and key metabolic pathways.

HS-induced metabolic damage, but r4-GAL4; UAS-XbpTs larvae fared poorly. At a
concentration of 0.7 M sucrose, we were able to collect significant numbers of these
transgenic larvae but observed no improvements (Fig. 3H to J). Thus, while ER stress
may play a role in our model of insulin resistance during caloric overload, it does not

seem to play a major role in the fat body.
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FIG 3 ER stress may play a role in HS-induced hyperglycemia and insulin resistance. Modulation of ER stress during development had mixed effects on
wandering third-instar larvae reared on a 0.8 M sucrose HS diet (A to G) or a 0.7 M sucrose HS diet (H to J). (A) Hemolymph glucose concentrations were reduced
by feeding HS supplemented with 5 mM 4-phenylbutryate (PBA) (n = 44). (B) Percent body fat in female (F) and male (M) larvae reared on both diets (n = 11).
(C) Larval weight at maturity after rearing on HS or PBA-supplemented HS diets (n = 11). (D) Akt phosphorylation was quantified in the presence of 0.5 uM
insulin relative to loading control in fat bodies from larvae reared on HS or PBA-supplemented HS diets (n = 9). (E) Hemolymph glucose concentrations in
wild-type larvae fed 0.8 M sucrose supplemented with 10 uM PERK inhibitor (inh.) GSK2606414 (n = 11). (F) PERK inhibitor seems to modestly decrease stored
larval TAG (n = 6). (G) No effect of PERK inhibitor on larval weight was observed (n = 6). (H) Fat body overexpression of the spliced Xbp7 cDNA (Xbp1s) was
unable to reduce hyperglycemia in larvae fed 0.7 M HS diets, compared with driver-crossed controls (n = 24). (I) Fat body overexpression of Xbp1s led to modest
effects on TAG accumulation in male larvae (n = 10). (J) Fat body overexpression of Xbp1s reduced larval weight in both sexes (n = 10). A two-tailed Student
t test was used to derive P values. Error bars show SEM.

A yin and yang relationship exists between insulin signaling and immunity.
Another pathway highlighted by RNA-seq analyses that has been shown to intersect
with insulin signaling in other studies is the immune response (17, 26). Hemolymph
from larvae fed control diets melanizes quickly, but HS-fed hemolymph demonstrated
a marked reduction in melanization, consistent with a reduced innate immune re-
sponse (Fig. 4A). Differential expression studies in larval fat body and whole larval and
adult Drosophila flies also supported a role for the immune response: many immune
genes were differentially expressed in the contexts of HS feeding, InR reduction, or InR
activation (Table 1; see also Tables S1, S2, S3, S4, S5, and S6 in the supplemental
material) (30, 33). Therefore, we asked whether the immune response was affected in
HS-fed or r4-GAL4; UAS-InR’ larvae. We induced septic injury using the Gram-negative
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FIG 4 Attenuation of the immune response by HS feeding. (A) Hemolymph isolated from wandering third-instar larvae reared on 0.15 M sucrose
melanizes within 5 min at room temperature (left), whereas little color is observed in 5-min-old hemolymph isolated from larvae reared on 1 M
sucrose (right). (B) Seven-day survival of adults reared on 0.15 M or 1 M sucrose diets. Three- to 7-day-old wild-type (w'’'$; r4-GAL4
transheterozygous) flies were infected with a semilethal dose of Pseudomonas aeruginosa, and survival was monitored for 7 days (n = 23 vials).
(C) Seven-day survival of adults reared on a 0.7 M sucrose diet. Three- to 7-day-old control (w'’’8; r4-GAL4 transheterozygous) and InR'
(r4-GAL4>UAS-InR!) fly survival over 7 days after inoculation with P. aeruginosa (n = 19 vials). Control flies pricked without P. aeruginosa are shown
at the top of each graph (n = 13 vials for each). A two-tailed Student t test was used to derive P values. Error bars show SEM.

bacterium Pseudomonas aeruginosa (56) at a concentration at which many but not all
animals typically die (see Materials and Methods for details). A significant fraction of
larvae died after a clean pricking injury (data not shown) as reported by others (57).
Therefore, we continued with adult infection studies. Consistent with a diminished
immune response indicated by reduced immune gene expression after HS feeding
(Tables S5 and S6), HS-reared adults exhibited increased infection-based mortality after
1 week (79%), compared with control-diet-reared flies (59%) (Fig. 4B), consistent with a
reduction in immune function. Clean pricking (without the pathogen) produced a
negligible reduction in 7-day adult survival regardless of diet (Fig. 4). Given the finding
that loss-of-function in insulin receptor signaling increased the expression of immune
response genes (Tables 1, S1, and S2), we hypothesized that the r4-GAL4; UAS-InR’
loss-of-function flies would be protected from death after infection. Indeed, this was
the case, as 23% of r4-GAL4; UAS-InR’ loss-of-function flies survived acute infection,
compared with a 12% survival for control flies fed the same moderately high-sugar diet
(0.7 M sucrose) (Fig. 4C). Therefore, reducing InR in the fat body can partially rescue the
increased infection susceptibility observed during overnutrition.

Peptidoglycan recognition protein RNAi produces insulin-like phenotypes.
Several members of the immune gene family encoding the peptidoglycan recognition
proteins (PGRPs) were differentially expressed along with insulin signaling (Table 1). We
chose two of these for further study. PGRP-SB2 is selectively expressed in the larval fat
body according to FlyAtlas (58) and is downregulated by HS feeding and by /nR RNAi
in the fat body. We knocked down PGRP-SB2 and observed a significant improvement
in growth and increase in the number of flies surviving 1 M sucrose (Fig. 5A and B).
PGRP-SC2, in contrast to PGRP-SB2, was upregulated by expressing InR RNAi in the fat
body. Knockdown of PGRP-SC2 led to the opposite phenotypes of PGRP-SB2, displaying
sugar-specific lethality and reduced size during caloric overload, compared with con-
trols (Fig. 5C and D). Other HS-associated phenotypes showed less striking influences of
PGRP knockdown (see Fig. S1 in the supplemental material). There was not a rescue of
the HS-induced developmental delay in r4-GAL4; UAS-PGRP-SB2' larvae (Fig. S1A). Fat
body PGRP-SB2 RNAI did not improve hemolymph glucose homeostasis or triglyceride
content (Fig. S1B and C), and r4-GAL4; UAS-PGRP-SB2' fat bodies did not have improved
insulin signaling, at least as measured by phospho-Akt level (Fig. S1D). PGRP-SC2 RNAi
did have minor effects on TAG content (Fig. S1E) and infection susceptibility (Fig. ST1F).
As in fat body InR RNAi adult flies, PGRP-SC2 RNAi improved infection resistance despite
reducing growth and survival on HS diets, although the data were significant only at
one time point (Fig. S1F). On the other hand, PGRP-SB2 RNAi adults seemed to exhibit
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FIG 5 Peptidoglycan recognition proteins (PGRPs) are novel growth regulators downstream of InR. (A)
Reducing PGRP-SB2 in the fat body leads to increased survival after rearing on 1 M sucrose HS diets
compared with controls (r4-GAL4 crossed to line number 60100 control genetic background flies) (n =
8 for each genotype). (B) Reducing PGRP-SB2 also increased larval size at maturity, compared with
wild-type controls (n = 15 for each genotype). (C) PGRP-SC2 RNAI in fat body reduces survival of larvae
reared on 1 M sucrose HS diets (n = 5 for each genotype). Due to the high degree of lethality of 1 M HS
diets on these animals, we analyzed them on 0.7 M sucrose HS diets. (D) Larval size is reduced by fat body
PGRP-SC2 RNAI (n = 15 for each genotype). A two-tailed Student t test was used to derive P values. Error
bars show SEM.

a slight impairment in infection resistance, which approached statistical significance
only in 0.7 M-reared animals (Fig. S1G and H). These data support a model in which
PGRP-SB2 impairs insulin signaling and PGRP-SC2 promotes it.

Identification of novel potential InR-dependent promoters. To search for
genomic elements that confer insulin sensitivity, we characterized potential regulatory
mechanisms for two gene lists: (i) genes decreased in InR' fat bodies and increased in
InRCA fat bodies (45 genes) and (ii) genes decreased in InR<A fat bodies and increased
in InR' fat bodies (83 genes). Known TF binding sites, as well as de novo 5- to 12-base
sequences, were identified in promoters (—700 to + 100 with respect to the transcriptional
start site [TSS]) of the genes in each of the two lists. Several such sequence elements were
identified as enriched in these data and may serve as sensors of insulin signaling (Fig. 6).

DISCUSSION

In this work, we link two established functions of the fat body, insulin signaling and
the immune response, and show that they vary reciprocally to one another at the
transcriptional level. Increasing insulin signaling led to reduced immune gene expres-
sion, and decreasing insulin signaling led to increased immune gene expression and
increased resistance to infection. Surprisingly, we found that HS diet-induced obesity
and growth defects could be regulated by fat body misexpression of immune response
genes. This cell-autonomous molecular relationship complements previous studies in
both flies and mammals (16, 19, 20, 59) and supports a counterregulatory model in
which insulin signaling and the immune response negatively regulate each other to
maintain energy balance.
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targets | match
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KTAA CAAACAT |1el0 [1169 | Forkhead
CAACACTCTT 1e-10 |18.18 | Unknown
CTGATAAGA 1e-10 [29.87 |Unknown
CCGCTCGGECAGC  |1e10 1039 [POLOOS

CAICCSAGAC 1e9 [19.51 | Paired
ATCTCCAAAAAT |te° |1463 |Caudal

FIG 6 Promoter elements common to InR target genes. The top 5 predicted sites were found within a
predicted promoter region (—700 to +100 with respect to the TSS) in genes with increased expression
in InR' fat bodies and decreased expression in InR°A fat bodies. The bottom two consensus sequences
were common to the promoter regions of genes with decreased expression in InR' fat bodies and
increased expression in INR<A fat bodies. Only the first site (GATGCCAGCTAA) was considered a strong
and significant match; the other six motifs are weakly enriched.

Using differential expression to search for potential downstream regulators of
insulin signaling in the fat body, we focused on selected gene ontology categories
based on the literature. A number of known FOXO targets were identified, as expected
(60-62). Ribosomal subunits were also overrepresented, consistent with previous stud-
ies showing a direct relationship between insulin signaling and ribosome biogenesis
(41, 63). This DE gene list was therefore likely to include additional, novel targets of
physiological importance. Most (58%) of the overlapping DE genes were inversely
regulated between constitutively active and reduced InR function. Many, however,
were regulated the same direction in both paradigms, which was unexpected. The
former are likely to be more-direct targets and/or sensors of insulin pathway activity.
The latter group of genes are likely to have more-complicated relationships with
the insulin signaling pathway, such as stage- or diet-specific roles. Changes in gene
expression might represent downstream effects of insulin signaling or counterregula-
tory attempts to fix cellular growth or metabolic defects during insulin resistance. One
counterregulatory attempt might be the observed increase in fat body PGRP-SC2
expression in InR' fat bodies, which might be expected to improve downstream aspects
of insulin signaling. Another potential compensatory mechanism for insulin resistance
in InR' fat bodies is the gene ilp6, which encodes a growth promoter during metamor-
phosis (64) and increases in expression in InR' fat bodies on both control and HS diets
(351% and 385%, respectively; for both comparisons, P < 0.001). The promoter ele-
ments identified using bioinformatics analysis may serve as key markers for and/or
mediators of insulin signaling. Future studies will explore these possibilities.

Many fat body DE genes represent conserved pathways that are of clinical impor-
tance in the pathophysiology of type 2 diabetes. Both HS and InR knockdown in the fat
body increased the expression of phosphoenolpyruvate carboxykinase (PEPCK), the
rate-limiting step of gluconeogenesis (Table 1) (33). The insulin-resistant fat body may
therefore act somewhat like the insulin-resistant liver, which exhibits an increase in
hepatic gluconeogenesis in type 2 diabetes in some rodent and human studies (65, 66).
InR" also led to increased pyruvate dehydrogenase kinase (PDK) and decreased ATP
citrate lyase expression, both of which could inhibit glycolytic flux. Reducing glycolysis
contributes to hyperglycemia and insulin resistance in some genetic forms of type 2
diabetes (67, 68) and is the basis of the competitive fatty acid versus glucose utilization
model known as the Randle cycle (69, 70). In addition, we observed significant changes
in the expression of cytochrome P450 enzymes and well as regulators of fatty acid and
polyamine metabolism, protein glycosylation, and the immune response. We set out to
understand which of these InR DE genes represented physiological changes in insulin-
resistant flies.

First, we looked at ER stress, also known as the unfolded protein response. During
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ER stress, the accumulation of aberrant proteins leads to compensatory increases in
degradation or refolding chaperones. ER stress is relieved by clearing the ER lumen of
misfolded proteins and by reducing translation (71). ER stress increases in obese,
high-calorie-fed, T2D patients, and reducing ER stress can improve T2D in rodents (45,
47, 72). We saw a transcriptional upregulation of genes that promote the ER stress
response along with a downregulation of ribosomal genes in insulin-resistant fat
bodies. Surprisingly, there was only a minor role for ER stress in fat body insulin
signaling, if any. One possibility is that the upregulation of ER stress response genes can
offset an early increase in ER stress, such that healthy levels of stress can be maintained.

Both differential expression and septic injury studies pointed to an important and
conserved relationship between insulin resistance and the immune response. Type 2
diabetic patients exhibit increased susceptibility to infection, and some infections
increase insulin resistance (11, 73-75). Likewise, in the Drosophila HS diet-induced T2D
model, systemic insulin resistance and obesity caused by HS feeding also corresponded
with reduced survival after septic injury. This parallel between flies and humans is
consistent with a recently established model in which diet-induced obesity paradoxi-
cally increases inflammation but reduces immune function (8, 9, 18). The increase in
immune gene expression in InR' fat bodies corresponded to improved resistance to
infection in these animals, which is perhaps a surprising result, considering the in-
creased susceptibility to infection in HS-reared flies. Reducing InR in this context seems
to negate the detrimental effects of an HS diet, such that genetically engineered insulin
resistance acted protectively, boosting the immune response. Our results are consistent
with a previously reported role for the transcription factor FOXO, a negative regulator
of insulin signaling, which can directly induce immune gene expression in flies and
mammalian cells (26, 76). Interestingly, previous studies in Drosophila have shown that
infection or activation of the tumor necrosis factor (TNF) receptor or Toll pathway can
inhibit insulin secretion and signaling (16, 17, 77), whereas eliminating macrophages
improves insulin sensitivity (78). Our results support a negative-feedback model in
which insulin signaling inhibits innate immunity and immunity inhibits insulin signal-
ing, a relationship that is strained on an HS diet. This mechanism would help to
maintain metabolic homeostasis when nutrients are limited via reallocation of fat body
resources to fighting infection when necessary instead of to promotion of growth or
energy storage. Such a model has been proposed (18, 79).

A wide variety of antimicrobial peptides and peptidoglycan recognition proteins
(PGRPs) are secreted by the fat body during the Drosophila immune response, which
typically recognizes the presence of infection via the Toll or IMD pathways, converging
on the transcription factor NF-kB to promote pathogen recognition and elimination, as
in humans (80, 81). Taking a candidate gene approach, we focused on two genes in the
PGRP family, PGRP-SB2 and PGRP-SC2. PGRP-SB2 expression was increased in InR* fat
bodies, whereas PGRP-SC2 mRNA was increased in InR' fat bodies, suggesting opposing
functions for these two proteins. Reducing PGRP-SB2 in the fat body led to increased
growth and survival when challenged with HS feeding, suggesting that it exerts a
negative effect on insulin signaling. In contrast, fat body RNA! targeting PGRP-SC2 gave
phenotypes similar to those induced by InR RNA|, including increased lethality and
reduced size on HS diets, suggesting that PGRP-SC2 is protective against HS-induced
metabolic toxicity. An increase in infection resistance, albeit at a single time point (Fig.
S2F), is consistent with previous reports that PGRP-SC2 negatively regulates IMD/Relish-
dependent immune gene expression (23, 82). Interestingly, other studies have found no
role for PGRP-SB or PGRP-SC in susceptibility to infection despite their effects on
immune gene expression (23, 83, 84). Although the mechanisms underlying the differ-
ent phenotypes in these PGRP-SB2' and PGRP-SC2' flies are still poorly understood, they
are likely to fit into the narrative established by previous investigators showing a
complex relationship between immunity and insulin signaling. Future studies will
explore the roles of these and other InR target genes and putative InR target promoters
in the insulin response.

These studies represent a simple paradigm in which to identify insulin targets in
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different cells, organs, and tissues that exhibit insulin-dependent phenotypes, such
as the heart, eye, brain, gut, gonad, or muscle. Because the complications of type 2
diabetes affect many organs and systems, probing transcriptional targets of InR in these
and other tissues may reveal additional, tissue-specific genes and mechanisms that
contribute to insulin resistance.

MATERIALS AND METHODS

Fly lines. Controls and RNAi lines were obtained from the Vienna Drosophila Resource Center (VDRC).
VDRC’'s w'’’8 line (stock line number 60000) and RNAI-TK landing site control (60100) were used as
genetic background controls for RNAi transgenes targeting InR (number 992), PGRP-SB2 (number
106538), and PGRP-SC2 (number 104578). hs-GAL4 (number 2077) and UAS-InR.A1325D (number 8263)
lines were from the Bloomington Drosophila stock center. The r4-GAL4 line was from reference 38, and
the UAS-Dcr2 line was used in all crosses to amplify RNAi (85). Offspring of the control cross between line
number 60100 and the UAS-Dcr2; r4-GAL4 line were used to test the ER stress drugs (Fig. 3). UAS-Xbp1s
flies were a gift from Diego Rincon-Limas (54).

Drosophila husbandry. The lab maintenance diet was a standard corn meal-dextrose-agar diet.
Experimental diets consisted of Bloomington’s Semidefined food with sucrose used for all sugar at
concentrations of 0.15 M (5%), 0.7 M (24%), 0.8 M (27%), and 1 M (34% sucrose), as used in previous
studies (30, 33); 5 mM 4-phenylbutyrate (PBA; Sigma number P21005) and 10 uM PERK inhibitor
(GSK2606414) were added to the diet as indicated, and these diets were compared to diets using an
equivalent amount of the appropriate solvent or diluent (water or dimethyl sulfoxide [DMSQO]). Heat
shock treatments were done for 30 min in empty fly vials using a 37°C water bath. Six hours of recovery
after heat shock gave robust phosphorylation of Akt, and this duration was therefore used for the
RNA-seq experimental samples.

Gene expression. RNA-seq experiments were done as described previously (33) using three biolog-
ical replicates for each genotype and/or diet. Briefly, fat bodies were separated from the rest of the
animal after bisecting, inverting, and placing the insect into phosphate-buffered saline (PBS). Fat bodies
were dislodged by pipetting and separated by centrifugation; the purity of fat body tissue was checked
on a slide before freezing in TRIzol. RNA was extracted and DNase and RiboZero treated, and then
libraries were prepared and lllumina Hi-seq sequenced and data were processed by the Washington
University Genome Technology Access Center. The Tuxedo Suite (86) and EdgeR (35) were used to detect
differentially expressed transcripts with a P value of <0.01 and a false-discovery rate of <0.05. DAVID was
used to characterize the gene ontology of differentially expressed gene lists with a P value cutoff of
<0.05 (36). Microarray studies on adult Canton-S flies were done as previously described (30).

Hemolymph glucose assays. Hemolymph glucose assays were done as described previously (33).
Briefly, larvae were rinsed in a sieve to remove any food from the cuticle surface and then dried. Jeweler's
fine forceps were used to injure the animal, and hemolymph was collected and then added to frozen
Infinity glucose reagent (Thermo number TR15421) to suppress melanization and trehalase activity. The
optical density at 340 nm (OD,,,) was read after 10 min at 37°C using a microplate spectrophotometer
and corrected to a blank well, and then the concentration of glucose was determined using a standard
curve.

Triglyceride assays. Triglyceride assays were done as described previously (33). Briefly, wandering
third-instar larvae were rinsed and dried and then weighed and frozen at —80°C until the assay.
PBS-0.1% Tween was used to homogenize larvae. Tubes were incubated at 65°C for 5 min and then
cooled to room temperature. An aliquot was added to Thermo Infinity triglyceride reagent (number
TR22421), and the mixture was incubated at 37°C for 5 to 10 min and then quantified using a microplate
spectrophotometer at OD,,, and a standard curve and blank well.

Insulin stimulation and Western blotting. Insulin stimulation experiments were done as previously
described (33). Briefly, larvae were rinsed, bisected, inverted, and placed in Schneider’'s medium. Insulin
(1 wM; Sigma 12643) or dilution buffer (10 mM HEPES) was added, and larvae were cultured for 15 min.
Fat bodies were harvested and frozen in sample buffer until Western blotting was performed. The
PO,-Akt band intensity was normalized to syntaxin as a loading control. Primary antibodies used were
from Cell Signaling (anti-PO,-Akt at Ser505, number 4054) and the Developmental Studies Hybridoma
Bank (antisyntaxin, number 8C3).

Nile Red staining and lipid droplet quantification. Larvae were inverted to expose fat bodies, fixed
for 30 min in 4% paraformaldehyde in PBS, and then washed 3 times, 10 min each time, in PBS and 0.1%
Triton X (PBS-TX) and stained in PBS-TX + 0.001% Nile Red (Acros number 200007-168) for 1 to 1.5 h.
Larvae were washed again in PBS-TX and mounted for confocal microscopy using a laser excitation of 543
nm. ImageJ software was used to quantify droplet sizes.

Infection assays. Pseudomonas aeruginosa strain PA14 was grown overnight and diluted to an Ay,
of 0.005, which corresponded to approximately 3.0 X 107 CFU/ml. Adults were anesthetized in CO, and
injured using a 0.001-mm-tip tungsten needle (Fine Science Tools number 10130-05) dipped in culture
and then allowed to wake, and viability was monitored for 7 days. Larval infection susceptibility was
measured by septic injury during the wandering third instar, and then viability was monitored for 10
days, spanning metamorphosis and eclosion. Animals stabbed without inoculum were used as a control
and to determine the extent of death not associated with the pathogen.

Bioinformatics motif discovery. We used the MatInspector program (37, 87) in Genomatix Genome
Analyzer (GGA) v3.2, to identify known transcription factor binding sites common to at least 85% of the
sequences in each gene list. We searched the putative promoter sequences (lengths optimized by GGA)
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against Genomatix’s Matrix Family Library version 9.1, including all vertebrate matrices, insect matrices,
and Core Promoter Elements (where a match required 0.75 similarity to the core, most conserved
positions of the binding site, as well as similarity above a matrix-specific cutoff). We used the HOMER
(Hypergeometric Optimization of Motif EnRichment) suite of tools (88) to perform de novo motif
discovery, i.e., identify novel binding sites within the putative promoter sequences of genes in each list.
We defined the promoter sequences as bases —700 to +100 of the TSS and looked for motifs of length
5 through 12 that are enriched relative to the rest of the genome.
Accession number(s). Complete RNA-seq and microarray data are accessible at GEO (https://www
.ncbi.nlm.nih.gov/geo/) via accession numbers GSE97447 (InR' data), GSE96763 (InR“* data), and
GSE105448 (adult Canton-S data).
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