629 research outputs found

    Characterization of edge damage induced on REBCO superconducting tape by mechanical slitting

    Get PDF
    Rare-earth barium-copper-oxide (REBCO) superconductors are high-field superconductors fabricated in a tape geometry that can be utilized in magnet applications well in excess of 20 T. Due to the multilayer architecture of the tape, delamination is one cause of mechanical failure in REBCO tapes. During a mechanical slitting step in the manufacturing process, edge cracks can be introduced into the tape. These cracks are thought to be potential initiation sites for crack propagation in the tapes when subjected to stresses in the fabrication and operation of magnet systems. We sought to understand which layers were the mechanically weakest by locating the crack initiation layer and identifying the geometrical conditions of the slitter that promoted or suppressed crack formation. The described cracking was investigated by selectively etching and characterizing each layer with scanning electron microscopy, laser confocal microscopy, and digital image analysis. Our analysis showed that the average crack lengths in the REBCO, LaMnO3 (LMO) and Al2O3 layers were 34 ÎĽm, 28 ÎĽm, and 15 ÎĽm, respectively. The total number of cracks measured in 30mmof wire length was between 3000 and 5700 depending on the layer and their crack densities were 102 cracks mm-1 for REBCO, 108 cracks mm-1 for LMO, and 183 cracks mm-1 for Al2O3. These results indicated that there are separate crack initiation mechanisms for the REBCO and the LMO layers, as detailed in the paper. With a better understanding of the crack growth behavior exhibited by REBCO tapes, the fabrication process can be improved to provide a more mechanically stable and cost-effective superconductor

    Rotating Resonator-Oscillator Experiments to Test Lorentz Invariance in Electrodynamics

    Full text link
    In this work we outline the two most commonly used test theories (RMS and SME) for testing Local Lorentz Invariance (LLI) of the photon. Then we develop the general framework of applying these test theories to resonator experiments with an emphasis on rotating experiments in the laboratory. We compare the inherent sensitivity factors of common experiments and propose some new configurations. Finally we apply the test theories to the rotating cryogenic experiment at the University of Western Australia, which recently set new limits in both the RMS and SME frameworks [hep-ph/0506074].Comment: Submitted to Lecture Notes in Physics, 36 pages, minor modifications, updated list of reference

    Prototype 1 MeV X -band linac for aviation cargo inspection

    Get PDF
    Aviation cargo unit load device (ULD) containers are typically much smaller than standard shipping containers, with a volume of around 1 m3. Standard 3-6 MeV x-ray screening linacs have too much energy to obtain sufficient contrast when inspecting ULDs, hence a lower 1 MeV linac is required. In order to obtain a small physical footprint, which can be adapted to mobile platform applications, a compact design is required, hence X-band radio-frequency technology is the ideal solution. A prototype 1.45 MeV linac cavity optimized for this application has been designed by Lancaster University and Science and Technology Facilities Council (STFC), manufactured by Comeb (Italy) and tested at Daresbury Laboratory using an e2v magnetron, modulator, and electron gun. The cavity is a bi-periodic π/2 structure, with beam-pipe aperture coupling to simplify the manufacture at the expense of shunt impedance, while keeping the transverse size as small as possible. The design, manufacture, and testing of this linac structure is presented. In order to optimize the image it is necessary to be able to modify the energy of the linac. It can be changed by altering the rf power from the magnetron but this also varies the magnetron frequency. By varying the beam current from 0-70 mA the beam energy varied from 1.45 to 1.2 MeV. This allows fast energy variation by altering the focus electrode bias voltage on the electron gun while keeping the dose rate constant by varying the repetition frequency. Varying the beam energy by varying the rf power and by varying the beam current are both studied experimentally. The momentum spread on the electron beam was between 1% and 5% depending on the beam current of 0-70 m

    Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Get PDF
    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2–2.3 π mm-rad horizontally and 0.6–1.0 π mm-rad vertically, a horizontal dispersion of 90–190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE
    • …
    corecore