657 research outputs found
Characterization of edge damage induced on REBCO superconducting tape by mechanical slitting
Rare-earth barium-copper-oxide (REBCO) superconductors are high-field superconductors fabricated in a tape geometry that can be utilized in magnet applications well in excess of 20 T. Due to the multilayer architecture of the tape, delamination is one cause of mechanical failure in REBCO tapes. During a mechanical slitting step in the manufacturing process, edge cracks can be introduced into the tape. These cracks are thought to be potential initiation sites for crack propagation in the tapes when subjected to stresses in the fabrication and operation of magnet systems. We sought to understand which layers were the mechanically weakest by locating the crack initiation layer and identifying the geometrical conditions of the slitter that promoted or suppressed crack formation. The described cracking was investigated by selectively etching and characterizing each layer with scanning electron microscopy, laser confocal microscopy, and digital image analysis. Our analysis showed that the average crack lengths in the REBCO, LaMnO3 (LMO) and Al2O3 layers were 34 ÎĽm, 28 ÎĽm, and 15 ÎĽm, respectively. The total number of cracks measured in 30mmof wire length was between 3000 and 5700 depending on the layer and their crack densities were 102 cracks mm-1 for REBCO, 108 cracks mm-1 for LMO, and 183 cracks mm-1 for Al2O3. These results indicated that there are separate crack initiation mechanisms for the REBCO and the LMO layers, as detailed in the paper. With a better understanding of the crack growth behavior exhibited by REBCO tapes, the fabrication process can be improved to provide a more mechanically stable and cost-effective superconductor
Recommended from our members
Characterization of Retinal Structure in ATF6-Associated Achromatopsia.
PurposeMutations in six genes have been associated with achromatopsia (ACHM): CNGA3, CNGB3, PDE6H, PDE6C, GNAT2, and ATF6. ATF6 is the most recent gene to be identified, though thorough phenotyping of this genetic subtype is lacking. Here, we sought to test the hypothesis that ATF6-associated ACHM is a structurally distinct form of congenital ACHM.MethodsSeven genetically confirmed subjects from five nonconsanguineous families were recruited. Foveal hypoplasia and the integrity of the ellipsoid zone (EZ) band (a.k.a., IS/OS) were graded from optical coherence tomography (OCT) images. Images of the photoreceptor mosaic were acquired using confocal and nonconfocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO). Parafoveal cone and rod density values were calculated and compared to published normative data as well as data from two subjects harboring CNGA3 or CNGB3 mutations who were recruited for comparative purposes. Additionally, nonconfocal dark-field AOSLO images of the retinal pigment epithelium were obtained, with quantitative analysis performed in one subject with ATF6-ACHM.ResultsFoveal hypoplasia was observed in all subjects with ATF6 mutations. Absence of the EZ band within the foveal region (grade 3) or appearance of a hyporeflective zone (grade 4) was seen in all subjects with ATF6 using OCT. There was no evidence of remnant foveal cone structure using confocal AOSLO, although sporadic cone-like structures were seen in nonconfocal split-detection AOSLO. There was a lack of cone structure in the parafovea, in direct contrast to previous reports.ConclusionsOur data demonstrate a near absence of cone structure in subjects harboring ATF6 mutations. This implicates ATF6 as having a major role in cone development and suggests that at least a subset of subjects with ATF6-ACHM have markedly fewer cellular targets for cone-directed gene therapies than do subjects with CNGA3- or CNGB3-ACHM
Rotating Resonator-Oscillator Experiments to Test Lorentz Invariance in Electrodynamics
In this work we outline the two most commonly used test theories (RMS and
SME) for testing Local Lorentz Invariance (LLI) of the photon. Then we develop
the general framework of applying these test theories to resonator experiments
with an emphasis on rotating experiments in the laboratory. We compare the
inherent sensitivity factors of common experiments and propose some new
configurations. Finally we apply the test theories to the rotating cryogenic
experiment at the University of Western Australia, which recently set new
limits in both the RMS and SME frameworks [hep-ph/0506074].Comment: Submitted to Lecture Notes in Physics, 36 pages, minor modifications,
updated list of reference
Prototype 1 MeV X -band linac for aviation cargo inspection
Aviation cargo unit load device (ULD) containers are typically much smaller than standard shipping containers, with a volume of around 1 m3. Standard 3-6 MeV x-ray screening linacs have too much energy to obtain sufficient contrast when inspecting ULDs, hence a lower 1 MeV linac is required. In order to obtain a small physical footprint, which can be adapted to mobile platform applications, a compact design is required, hence X-band radio-frequency technology is the ideal solution. A prototype 1.45 MeV linac cavity optimized for this application has been designed by Lancaster University and Science and Technology Facilities Council (STFC), manufactured by Comeb (Italy) and tested at Daresbury Laboratory using an e2v magnetron, modulator, and electron gun. The cavity is a bi-periodic π/2 structure, with beam-pipe aperture coupling to simplify the manufacture at the expense of shunt impedance, while keeping the transverse size as small as possible. The design, manufacture, and testing of this linac structure is presented. In order to optimize the image it is necessary to be able to modify the energy of the linac. It can be changed by altering the rf power from the magnetron but this also varies the magnetron frequency. By varying the beam current from 0-70 mA the beam energy varied from 1.45 to 1.2 MeV. This allows fast energy variation by altering the focus electrode bias voltage on the electron gun while keeping the dose rate constant by varying the repetition frequency. Varying the beam energy by varying the rf power and by varying the beam current are both studied experimentally. The momentum spread on the electron beam was between 1% and 5% depending on the beam current of 0-70 m
Characterisation of the muon beams for the Muon Ionisation Cooling Experiment
A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2–2.3 π mm-rad horizontally and 0.6–1.0 π mm-rad vertically, a horizontal dispersion of 90–190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE
- …