2,438 research outputs found

    In vivo strains in the femur of river cooter turtles (Pseudemys concinna) during terrestrial locomotion: tests of force-platform models of loading mechanics

    Get PDF
    Previous analyses of ground reaction force (GRF) and kinematic data from river cooter turtles (Pseudemys concinna) during terrestrial walking led to three primary conclusions about the mechanics of limb bone loading in this lineage: (1) the femur was loaded in a combination of axial compression, bending and torsion, similar to previously studied non-avian reptiles, (2) femoral shear stresses were high despite the possession of a reduced tail in turtles that does not drag on the ground and (3) stress-based calculations of femoral safety factors indicated high values in bending and torsion, similar to other reptiles and suggesting that substantial `overbuilding\u27 of limb bones could be an ancestral feature of tetrapods. Because force-platform analyses produce indirect estimates of bone loading, we sought to validate these conclusions by surgically implanting strain gauges on turtle femora to directly measure in vivo strains during terrestrial walking. Strain analyses verified axial compression and bending as well as high torsion in turtle femora, with peak axial strains comparable to those of other non-avian reptiles at similar walking speeds but higher peak shear strains approaching 2000 μϵ. Planar strain analyses showed patterns of neutral axis (NA) of femoral bending orientations and shifting generally consistent with our previous force-platform analyses of bone stresses, tending to place the anterior and dorsal aspects of the femur in tension and verifying an unexpected pattern from our force studies that differs from patterns in other non-avian reptiles. Calculated femoral safety factors were 3.8 in torsion and ranged from 4.4 to 6.9 in bending. Although these safety factors in bending were lower than values derived from our stress-based calculations, they are similar to strain-based safety factors calculated for other non-avian reptiles in terrestrial locomotion and are still high compared with safety factors calculated for limb bones of birds and mammals. These findings are consistent with conclusions drawn from our previous models of limb bone stresses in turtles and suggest that not only are turtle limb bones `overbuilt\u27 in terms of resisting the loads that they experience during locomotion but also, across tetrapod lineages, elevated torsion and high limb bone safety factors may be primitive features of limb bone design

    Antiparasitic activity of chicory (Cichorium intybus) and its natural bioactive compounds in livestock: a review

    Get PDF
    Increasing drug resistance in gastrointestinal (GI) parasites of livestock and concerns about chemical residues in animal products and the environment are driving the development of alternative control strategies that are less reliant on the use of synthetic drugs. An increasingly investigated approach is the use of bioactive forages with antiparasitic properties as part of the animal’s diet (nutraceuticals) or as potential sources of novel, natural parasiticides. Chicory (Cichorium intybus) is a multi-purpose crop and one of the most promising bioactive forages in temperate regions, and numerous in vivo trials have explored its potential against parasitic nematodes in livestock. However, it is unclear whether chicory can induce a direct and broad activity against various GI parasites in different livestock species, and the levels of chicory in the diet that are required to exert an efficient antiparasitic effect. Moreover, the mechanisms leading to the reported parasiticidal activity of chicory are still largely unknown, and its bioactive phytochemicals have only recently been investigated. In this review, we summarise the progress in the study of the antiparasitic activity of chicory and its natural bioactive compounds against GI parasites in livestock, through examination of the published literature. The available evidence indicates that feeding chicory can reduce faecal egg counts and/or worm burdens of abomasal nematodes, but not infections with intestinal worms, in ruminants. Highly chicory-rich diets (≥ 70% of chicory dry matter in the diet) may be necessary to directly affect abomasal parasitism. Chicory is known to synthesise several bioactive compounds with potential antiparasitic activity, but most research has been devoted to the role of sesquiterpene lactones (SL). Recent in vitro studies have confirmed direct and potent activity of SL-rich extracts from chicory against different GI helminths of livestock. Chicory SL have also been reported to exhibit antimalarial properties and its potential antiprotozoal activity in livestock remains to be evaluated. Furthermore, the detailed identification of the main antiparasitic metabolites of chicory and their pharmacokinetics need further confirmation. Research gaps and perspectives on the potential use of chicory as a nutraceutical forage and a source of bioactive compounds for parasite control in livestock are discussed

    Precision stellar radial velocity measurements with FIDEOS at the ESO 1-m telescope of La Silla

    Full text link
    We present results from the commissioning and early science programs of FIDEOS, the new high-resolution echelle spectrograph developed at the Centre of Astro Engineering of Pontificia Universidad Catolica de Chile, and recently installed at the ESO 1m telescope of La Silla. The instrument provides spectral resolution R = 43,000 in the visible spectral range 420-800 nm, reaching a limiting magnitude of 11 in V band. Precision in the measurement of radial velocity is guaranteed by light feeding with an octagonal optical fibre, suitable mechanical isolation, thermal stabilisation, and simultaneous wavelength calibration. Currently the instrument reaches radial velocity stability of = 8 m/s over several consecutive nights of observation

    Negative time delay for wave reflection from a one-dimensional semi-harmonic well

    Full text link
    It is reported that the phase time of particles which are reflected by a one-dimensional semi-harmonic well includes a time delay term which is negative for definite intervals of the incoming energy. In this interval, the absolute value of the negative time delay becomes larger as the incident energy becomes smaller. The model is a rectangular well with zero potential energy at its right and a harmonic-like interaction at its left.Comment: 6 pages, 5 eps figures. Talk presented at the XXX Workshop on Geometric Methods in Physics, Bialowieza, Poland, 201

    The Mass-Radius Relationship for Very Low Mass Stars: Four New Discoveries from the HATSouth Survey

    Get PDF
    We report the discovery of four transiting F-M binary systems with companions between 0.1-0.2 Msun in mass by the HATSouth survey. These systems have been characterised via a global analysis of the HATSouth discovery data, combined with high-resolution radial velocities and accurate transit photometry observations. We determined the masses and radii of the component stars using a combination of two methods: isochrone fitting of spectroscopic primary star parameters, and equating spectroscopic primary star rotation velocity with spin-orbit synchronisation. These new very low mass companions are HATS550-016B (0.110 -0.006/+0.005 Msun, 0.147 -0.004/+0.003 Rsun), HATS551-019B (0.17 -0.01/+0.01 Msun, 0.18 -0.01/+0.01 Rsun), HATS551-021B (0.132 -0.005/+0.014 Msun, 0.154 -0.008/+0.006 Rsun), HATS553-001B (0.20 -0.02/+0.01 Msun, 0.22 -0.01/+0.01 Rsun). We examine our sample in the context of the radius anomaly for fully-convective low mass stars. Combining our sample with the 13 other well-studied very low mass stars, we find a tentative 5% systematic deviation between the measured radii and theoretical isochrone models.Comment: 17 pages, 8 figures, accepted for publication in MNRA

    Elongation and fluctuations of semi-flexible polymers in a nematic solvent

    Get PDF
    We directly visualize single polymers with persistence lengths ranging from p=0.05\ell_p=0.05 to 16 μ\mum, dissolved in the nematic phase of rod-like {\it fd} virus. Polymers with sufficiently large persistence length undergo a coil-rod transition at the isotropic-nematic transition of the background solvent. We quantitatively analyze the transverse fluctuations of semi-flexible polymers and show that at long wavelengths they are driven by the fluctuating nematic background. We extract both the Odijk deflection length and the elastic constant of the background nematic phase from the data.Comment: 4 pages, 4 figures, submitted to PR
    corecore