114 research outputs found

    Evidence for Sexual Dimorphism in the Response to TLR3 Activation in the Developing Neonatal Mouse Brain: A Pilot Study

    Get PDF
    Toll-like receptor (TLR)3 activation during the neonatal period produces responses linked to the origins of neuropsychiatric disorders. Although there is sexual dimorphism in neuropsychiatric disorders, it is unknown if brain responses to TLR3 activation are sex-specific. We hypothesized that poly I:C in a post-natal day (P)8 model induces a sexually dimorphic inflammatory responses. C57BL6 mice received intraperitoneal injection of poly I:C (10 mg/kg) or vehicle [normal saline (NS)] at P8. Pups were killed at 6 or 14 h for caspase 3 and 8 activity assays, NFkB ELISA, IRF3, AP1, and GFAP western blotting and cytokines/chemokines gene expression real time qRT-PCR (4–6/group). A second group of pups were killed at 24 h (P9) or 7 days (P15) after poly I:C to assess astrocytic (GFAP) and microglia (Iba1) activation in the hippocampus, thalamus and cortex using immunohistochemistry, and gene and protein expression of cytokines/chemokines using real time RT-PCR and MSD, respectively (4–6/group). Non-parametric analysis was applied. Six hours after poly I:C, caspase-3 and -8 activities in cytosolic fractions were 1.6 and 2.8-fold higher in poly I:C-treated than in NS-treated female mice, respectively, while gene expressions of pro-inflammatory cytokines were upregulated in both sexes. After poly I:C, IRF3 nuclear translocation occurred earlier (6 h) in female mice and later (14 h) in male mice. At 14 h after poly I:C, only male mice also had increased nuclear NFκB levels (88%, p < 0.001) and GFAP expression coinciding with persistent IL-6 and FAS gene upregulation (110 and 77%, respectively; p < 0.001) and IL-10 gene downregulation (-42%, p < 0.05). At 24 h after poly I:C, IL-1β, CXCL-10, TNF-α, and MCP-1 were similarly increased in both sexes but at 7 days after exposure, CXCL-10 and INFγ were increased and IL-10 was decreased only in female mice. Accordingly, microglial activation persisted at 7 days after poly I:C in the hippocampus, thalamus and cortex of female mice. This preliminary study suggests that TLR3 activation may produce in the developing neonatal mouse brain a sexually dimorphic response with early activation of caspase-dependent pathways in female mice, activation of inflammatory cascades in both sexes, which then persists in female mice. Further well-powered studies are essential to confirm these sex-specific findings

    P and R Wave Detection in Complete Congenital Atrioventricular Block

    Get PDF
    Complete atrioventricular block (type III AVB) is characterized by an absence of P wave transmission to ventricles. This implies that QRS complexes are generated in an autonomous way and are not coordinated with P waves. This work introduces a new algorithm for the detection of P waves for this type of pathology using non-invasive electrocardiographic surface leads. The proposed algorithm is divided into three stages. In the first stage, the R waves located by a QRS detector are used to generate the RR series and time references for the other stages of the algorithm. In the second stage, the ventricular activity (QT segment) is removed by using an adaptive filter that obtains an averaged pattern of the QT segment. In the third stage, a new P wave detector is applied to the residual signal obtained after QT cancellation in order to detect P wave locations and get the PP time series. Eight Holter records from patients with congenital type III AVB were used to verify the proposed algorithm. Although further improvements should be made to improve the algorithm¿s performance, the results obtained show high average values of sensitivity (90.52 %) and positive prediction (90.98%)

    Maternal Use of Antibiotics, Hospitalisation for Infection during Pregnancy, and Risk of Childhood Epilepsy: A Population-Based Cohort Study

    Get PDF
    BACKGROUND: Maternal infection during pregnancy may be a risk factor for epilepsy in offspring. Use of antibiotics is a valid marker of infection. METHODOLOGY/PRINCIPAL FINDINGS: To examine the relationship between maternal infection during pregnancy and risk of childhood epilepsy we conducted a historical cohort study of singletons born in northern Denmark from 1998 through 2008 who survived ≥29 days. We used population-based medical databases to ascertain maternal use of antibiotics or hospital contacts with infection during pregnancy, as well as first-time hospital contacts with a diagnosis of epilepsy among offspring. We compared incidence rates (IR) of epilepsy among children of mothers with and without infection during pregnancy. We examined the outcome according to trimester of exposure, type of antibiotic, and total number of prescriptions, using Poisson regression to estimate incidence rate ratios (IRRs) while adjusting for covariates. Among 191,383 children in the cohort, 948 (0.5%) were hospitalised or had an outpatient visit for epilepsy during follow-up, yielding an IR of 91 per 100 000 person-years (PY). The five-year cumulative incidence of epilepsy was 4.5 per 1000 children. Among children exposed prenatally to maternal infection, the IR was 117 per 100,000 PY, with an adjusted IRR of 1.40 (95% confidence interval (CI): 1.22-1.61), compared with unexposed children. The association was unaffected by trimester of exposure, antibiotic type, or prescription count. CONCLUSIONS/SIGNIFICANCE: Prenatal exposure to maternal infection is associated with an increased risk of epilepsy in childhood. The similarity of estimates across types of antibiotics suggests that processes common to all infections underlie this outcome, rather than specific pathogens or drugs

    A Newly Identified Essential Complex, Dre2-Tah18, Controls Mitochondria Integrity and Cell Death after Oxidative Stress in Yeast

    Get PDF
    A mutated allele of the essential gene TAH18 was previously identified in our laboratory in a genetic screen for new proteins interacting with the DNA polymerase delta in yeast [1]. The present work shows that Tah18 plays a role in response to oxidative stress. After exposure to lethal doses of H2O2, GFP-Tah18 relocalizes to the mitochondria and controls mitochondria integrity and cell death. Dre2, an essential Fe/S cluster protein and homologue of human anti-apoptotic Ciapin1, was identified as a molecular partner of Tah18 in the absence of stress. Moreover, Ciapin1 is able to replace yeast Dre2 in vivo and physically interacts with Tah18. Our results are in favour of an oxidative stress-induced cell death in yeast that involves mitochondria and is controlled by the newly identified Dre2-Tah18 complex

    Deficit of homozygosity among 1.52 million individuals and genetic causes of recessive lethality

    Get PDF
    Genotypes causing pregnancy loss and perinatal mortality are depleted among living individuals and are therefore difficult to find. To explore genetic causes of recessive lethality, we searched for sequence variants with deficit of homozygosity among 1.52 million individuals from six European populations. In this study, we identified 25 genes harboring protein-altering sequence variants with a strong deficit of homozygosity (10% or less of predicted homozygotes). Sequence variants in 12 of the genes cause Mendelian disease under a recessive mode of inheritance, two under a dominant mode, but variants in the remaining 11 have not been reported to cause disease. Sequence variants with a strong deficit of homozygosity are over-represented among genes essential for growth of human cell lines and genes orthologous to mouse genes known to affect viability. The function of these genes gives insight into the genetics of intrauterine lethality. We also identified 1077 genes with homozygous predicted loss-of-function genotypes not previously described, bringing the total set of genes completely knocked out in humans to 4785.publishedVersio

    A Novel Unstable Duplication Upstream of HAS2 Predisposes to a Breed-Defining Skin Phenotype and a Periodic Fever Syndrome in Chinese Shar-Pei Dogs

    Get PDF
    Hereditary periodic fever syndromes are characterized by recurrent episodes of fever and inflammation with no known pathogenic or autoimmune cause. In humans, several genes have been implicated in this group of diseases, but the majority of cases remain unexplained. A similar periodic fever syndrome is relatively frequent in the Chinese Shar-Pei breed of dogs. In the western world, Shar-Pei have been strongly selected for a distinctive thick and heavily folded skin. In this study, a mutation affecting both these traits was identified. Using genome-wide SNP analysis of Shar-Pei and other breeds, the strongest signal of a breed-specific selective sweep was located on chromosome 13. The same region also harbored the strongest genome-wide association (GWA) signal for susceptibility to the periodic fever syndrome (praw = 2.3×10−6, pgenome = 0.01). Dense targeted resequencing revealed two partially overlapping duplications, 14.3 Kb and 16.1 Kb in size, unique to Shar-Pei and upstream of the Hyaluronic Acid Synthase 2 (HAS2) gene. HAS2 encodes the rate-limiting enzyme synthesizing hyaluronan (HA), a major component of the skin. HA is up-regulated and accumulates in the thickened skin of Shar-Pei. A high copy number of the 16.1 Kb duplication was associated with an increased expression of HAS2 as well as the periodic fever syndrome (p<0.0001). When fragmented, HA can act as a trigger of the innate immune system and stimulate sterile fever and inflammation. The strong selection for the skin phenotype therefore appears to enrich for a pleiotropic mutation predisposing these dogs to a periodic fever syndrome. The identification of HA as a major risk factor for this canine disease raises the potential of this glycosaminoglycan as a risk factor for human periodic fevers and as an important driver of chronic inflammation
    • …
    corecore