1,073 research outputs found
BlogForever D2.6: Data Extraction Methodology
This report outlines an inquiry into the area of web data extraction, conducted within the context of blog preservation. The report reviews theoretical advances and practical developments for implementing data extraction. The inquiry is extended through an experiment that demonstrates the effectiveness and feasibility of implementing some of the suggested approaches. More specifically, the report discusses an approach based on unsupervised machine learning that employs the RSS feeds and HTML representations of blogs. It outlines the possibilities of extracting semantics available in blogs and demonstrates the benefits of exploiting available standards such as microformats and microdata. The report proceeds to propose a methodology for extracting and processing blog data to further inform the design and development of the BlogForever platform
Flow-induced correlation effects within a linear chain in a polymer melt
A framework for a consistent description of the flow-induced correlation effects within a linear polymer chain in a melt is proposed. The formalism shows how correlations between chain segments in the flow can be incorporated into a hierarchy of distribution functions for tangent vectors. The present model allows one to take into account all the major relaxation mechanisms. Special cases of the derived set of equations are shown to yield existing models and shed some light on the connection between them. Consequences of several assumptions widely used in the literature are analyzed within the developed framework
Controlled Nanoparticle Formation by Diffusion Limited Coalescence
Polymeric nanoparticles (NPs) have a great application potential in science
and technology. Their functionality strongly depends on their size. We present
a theory for the size of NPs formed by precipitation of polymers into a bad
solvent in the presence of a stabilizing surfactant. The analytical theory is
based upon diffusion-limited coalescence kinetics of the polymers.
Two relevant time scales, a mixing and a coalescence time, are identified and
their ratio is shown to determine the final NP diameter. The size is found to
scale in a universal manner and is predominantly sensitive to the mixing time
and the polymer concentration if the surfactant concentration is sufficiently
high. The model predictions are in good agreement with experimental data. Hence
the theory provides a solid framework for tailoring nanoparticles with a priori
determined size.Comment: 4 pages, 3 figure
Influence of molecular weight on the phase behavior and structure formation of branched side-chain hairy-rod polyfluorene in bulk phase.
We report on an experimental study of the self-organization and phase behavior of hairy-rod π -conjugated branched side-chain polyfluorene, poly[9,9-bis(2-ethylhexyl)-fluorene-2,7-diyl]—i.e., poly[2,7–(9,9–bis(2–ethylhexyl)fluorene] (PF2∕6) —as a function of molecular weight (Mn) . The results have been compared to those of phenomenological theory. Samples for which Mn=3–147 kg∕mol were used. First, the stiffness of PF2∕6 , the assumption of the theory, has been probed by small-angle neutron scattering in solution. Thermogravimetry has been used to show that PF2∕6 is thermally stable over the conditions studied. Second, the existence of nematic and hexagonal phases has been phenomenologically identified for lower and higher Mn (LMW, Mn<Mn* and HMW, Mn>Mn* ) regimes, respectively, based on free-energy argument of nematic and hexagonal hairy rods and found to correspond to the experimental x-ray diffraction (XRD) results for PF2∕6 . By using the lattice parameters of PF2∕6 as an experimental input, the nematic-hexagonal transition has been predicted in the vicinity of glassification temperature (Tg) of PF2∕6 . Then, by taking the orientation parts of the free energies into account the nematic-hexagonal transition has been calculated as a function of temperature and Mn and a phase diagram has been formed. Below Tg of 80 °C only (frozen) nematic phase is observed for Mn<Mn*=104 g∕mol and crystalline hexagonal phase for Mn>Mn* . The nematic-hexagonal transition upon heating is observed for the HMW regime depending weakly on Mn , being at 140–165 °C for Mn>Mn* . Third, the phase behavior and structure formation as a function of Mn have been probed using powder and fiber XRD and differential scanning calorimetry and reasonable semiquantitative agreement with theory has been found for Mn≥3 kg∕mol . Fourth, structural characteristics are widely discussed. The nematic phase of LMW materials has been observed to be denser than high-temperature nematic phase of HMW compounds. The hexagonal phase has been found to be paracrystalline in the (ab0) plane but a genuine crystal meridionally. We also find that all these materials including the shortest 10-mer possess the formerly observed rigid five-helix hairy-rod molecular structure
Experimental Outlook for the Pentaquark
A critical look is taken at both positive and null evidence for the
pentaquark. Potential problems with experiments will be discussed
and the question of what conclusion can be drawn from both the positive and the
null results is examined. First the question of existence of the
pentaquark is considered, followed by a discussion of new experiments that are
either planned or in progress to answer questions about its mass, width and
isospin. Finally, indirect evidence for the parity of the is
examined, and suggestions for experiments to measure its parity directly are
given.Comment: MESON2004 conference proceedings, 10 pages, 1 figur
A Keck Survey of Gravitational Lens Systems: I. Spectroscopy of SBS 0909+532, HST 1411+5211, and CLASS B2319+051
We present new results from a continuing Keck program to study gravitational
lens systems. We have obtained redshifts for three lens systems, SBS 0909+532,
HST 1411+5211, and CLASS B2319+051. For all of these systems, either the source
or lens redshift (or both) has been previously unidentified. We find (z_l, z_s)
= (0.830, 1.377) for SBS 0909+532; (z_l, z_s) = (0.465, 2.811) for HST
1411+5211, although the source redshift is still tentative; and (z_l1, z_l2) =
(0.624, 0.588) for the two lensing galaxies in CLASS B2319+051. The background
radio source in B2319+051 has not been detected optically; its redshift is,
therefore, still unknown. We find that the spectral features of the central
lensing galaxy in all three systems are typical of an early-type galaxy. The
observed image splittings in SBS 0909+532 and HST 1411+5211 imply that the
masses within the Einstein ring radii of the lensing galaxies are 1.4 x 10^{11}
and 2.0 x 10^{11} h^{-1} M_sun, respectively. The resulting B band
mass-to-light ratio for HST 1411+5211 is 41.3 +/- 1.2 h (M/L)_sun, a factor of
5 times higher than the average early-type lensing galaxy. This large
mass-to-light is almost certainly the result of the additional mass
contribution from the cluster CL 3C295 at z = 0.46. For the lensing galaxy in
SBS 0909+532, we measure (M/L)_B = 4^{+11}_{-3} h (M/L)_sun where the large
errors are the result of significant uncertainty in the galaxy luminosity.
While we cannot measure directly the mass-to-light ratio of the lensing galaxy
in B2319+051, we estimate that (M/L)_B is between 3-7 h (M/L)_sun.Comment: Accepted for publication in Astronomical Journal. 21 pages, including
7 figure
A Comparative Study of Pentaquark Interpolating Currents
In a diquark-diquark-antiquark picture of pentaquarks, we use two
interpolating currents to calculate the mass of the recently measured
state in the framework of QCD sum rules. We show that, even though
yielding similar values for (and close to the experimental
value), these currents differ from each other in what concerns the strength of
the pole, convergence of the OPE and sensitivity to the continuum threshold
parameter.Comment: 19 pages, 8 figures, replaced version accepted for publication in
Phys. Lett.
Spectroscopy of pentaquark states
We construct a complete classification of pentaquark states in terms of the
spin-flavour SU(6) representations. We find that only some definite SU(3)
representations are allowed, singlets, octets, decuplets, anti-decuplets,
27-plets and 35-plets. The latter three contain exotic states, which cannot be
constructed from three quarks only. This complete classification scheme is
general and model independent and is useful both for model builders and
experimentalists. The mass spectrum is obtained from a Gursey-Radicati type
mass formula, whose coefficients have been determined previously by a study of
qqq baryons. The ground state pentaquark which is identified with the recently
observed Theta(1540) state, is predicted to be an isosinglet anti-decuplet
state. Its parity depends on the interplay between the spin-flavour and orbital
contributions to the mass operator.Comment: 26 pages, 4 figures, 11 tables, revised version with 2 extra tables,
an updated list of references and expanded discussion of the results.
Accepted for publication in Eur. Phys. J.
The Evidence for a Pentaquark Signal and Kinematic Reflections
Several recent experiments have reported evidence for a narrow baryon
resonance with positive strangeness () at a mass of 1.54 GeV/.
Baryons with cannot be conventional states and the reports have
thus generated much theoretical speculation about the nature of possible
baryons, including a 5-quark, or pentaquark, interpretation. We show that
narrow enhancements in the effective mass spectrum can be generated as
kinematic reflections resulting from the decay of mesons, such as the
, the and the .Comment: 4 pages, 4 figure
Are and the Roper resonance diquark-diquark-antiquark states?
We consider a current in the QCD sum rule framework to study
the mass of the recently observed pentaquark state , obtaining
good agreement with the experimental value. We also study the mass of the
pentaquark . Our results are compatible with the interpretation
of the state as being the Roper resonance N(1440), as suggested
by Jaffe and Wilczek.Comment: 9 pages RevTex4 and 3 eps figures. Revised version accepted for
publication in Phys. Lett.
- …
