215 research outputs found

    Bonded straight and helical flagellar filaments form ultra-low-density glasses

    Full text link
    We study how the three-dimensional shape of rigid filaments determines the microscopic dynamics and macroscopic rheology of entangled semi-dilute Brownian suspensions. To control the filament shape we use bacterial flagella, which are micron-long helices assembled from flagellin monomers. We compare the dynamics of straight rods, helical filaments, and shape diblock copolymers composed of seamlessly joined straight and helical segments. Caged by their neighbors, straight rods preferentially diffuse along their long axis, but exhibit significantly suppressed rotational diffusion. Entangled helical filaments escape their confining tube by corkscrewing through the dense obstacles created by other filaments. By comparison, the adjoining segments of the rod-helix shape-diblocks suppress both the translation and the corkscrewing dynamics, so that shape-diblocks become permanently jammed at exceedingly low densities. We also measure the rheological properties of semi-dilute suspensions and relate their mechanical properties to the microscopic dynamics of constituent filaments. In particular, rheology shows that an entangled suspension of shape rod-helix copolymers forms a low-density glass whose elastic modulus can be estimated by accounting for how shear deformations reduce the entropic degrees of freedom of constrained filaments. Our results demonstrate that the three-dimensional shape of rigid filaments can be used to design rheological properties of semi-dilute fibrous suspensions.Comment: 24 pages, 7 figure

    A combination of LCPUFA ameliorates airway inflammation in asthmatic mice by promoting pro-resolving effects and reducing adverse effects of EPA

    Get PDF
    Cusanuswerk, who supported D.F. with a stipend. J.D. is funded by European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no: 677542) and the Barts Charity (grant no: MGU0343) to J.D. J.D. is also supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (grant 107613/Z/15/Z)

    Evidence for softening of first-order transition in 3D by quenched disorder

    Full text link
    We study by extensive Monte Carlo simulations the effect of random bond dilution on the phase transition of the three-dimensional 4-state Potts model which is known to exhibit a strong first-order transition in the pure case. The phase diagram in the dilution-temperature plane is determined from the peaks of the susceptibility for sufficiently large system sizes. In the strongly disordered regime, numerical evidence for softening to a second-order transition induced by randomness is given. Here a large-scale finite-size scaling analysis, made difficult due to strong crossover effects presumably caused by the percolation fixed point, is performed.Comment: LaTeX file with Revtex, 4 pages, 4 eps figure

    Competing mechanisms for step meandering in unstable growth

    Full text link
    The meander instability of a vicinal surface growing under step flow conditions is studied within a solid-on-solid model. In the absence of edge diffusion the selected meander wavelength agrees quantitatively with the continuum linear stability analysis of Bales and Zangwill [Phys. Rev. B {\bf 41}, 4400 (1990)]. In the presence of edge diffusion a local instability mechanism related to kink rounding barriers dominates, and the meander wavelength is set by one-dimensional nucleation. The long-time behavior of the meander amplitude differs in the two cases, and disagrees with the predictions of a nonlinear step evolution equation [O. Pierre-Louis et al., Phys. Rev. Lett. {\bf 80}, 4221 (1998)]. The variation of the meander wavelength with the deposition flux and with the activation barriers for step adatom detachment and step crossing (the Ehrlich-Schwoebel barrier) is studied in detail. The interpretation of recent experiments on surfaces vicinal to Cu(100) [T. Maroutian et al., Phys. Rev. B {\bf 64}, 165401 (2001)] in the light of our results yields an estimate for the kink barrier at the close packed steps.Comment: 8 pages, 7 .eps figures. Final version. Some errors in chapter V correcte

    Critical behavior of weakly-disordered anisotropic systems in two dimensions

    Full text link
    The critical behavior of two-dimensional (2D) anisotropic systems with weak quenched disorder described by the so-called generalized Ashkin-Teller model (GATM) is studied. In the critical region this model is shown to be described by a multifermion field theory similar to the Gross-Neveu model with a few independent quartic coupling constants. Renormalization group calculations are used to obtain the temperature dependence near the critical point of some thermodynamic quantities and the large distance behavior of the two-spin correlation function. The equation of state at criticality is also obtained in this framework. We find that random models described by the GATM belong to the same universality class as that of the two-dimensional Ising model. The critical exponent ν\nu of the correlation length for the 3- and 4-state random-bond Potts models is also calculated in a 3-loop approximation. We show that this exponent is given by an apparently convergent series in ϵ=c−12\epsilon=c-\frac{1}{2} (with cc the central charge of the Potts model) and that the numerical values of ν\nu are very close to that of the 2D Ising model. This work therefore supports the conjecture (valid only approximately for the 3- and 4-state Potts models) of a superuniversality for the 2D disordered models with discrete symmetries.Comment: REVTeX, 24 pages, to appear in Phys.Rev.

    Magnetic critical behavior of two-dimensional random-bond Potts ferromagnets in confined geometries

    Full text link
    We present a numerical study of 2D random-bond Potts ferromagnets. The model is studied both below and above the critical value Qc=4Q_c=4 which discriminates between second and first-order transitions in the pure system. Two geometries are considered, namely cylinders and square-shaped systems, and the critical behavior is investigated through conformal invariance techniques which were recently shown to be valid, even in the randomness-induced second-order phase transition regime Q>4. In the cylinder geometry, connectivity transfer matrix calculations provide a simple test to find the range of disorder amplitudes which is characteristic of the disordered fixed point. The scaling dimensions then follow from the exponential decay of correlations along the strip. Monte Carlo simulations of spin systems on the other hand are generally performed on systems of rectangular shape on the square lattice, but the data are then perturbed by strong surface effects. The conformal mapping of a semi-infinite system inside a square enables us to take into account boundary effects explicitly and leads to an accurate determination of the scaling dimensions. The techniques are applied to different values of Q in the range 3-64.Comment: LaTeX2e file with Revtex, revised versio

    Fairy tale tourism: the architectural projection mapping of magically real and irreal festival lightscapes

    Get PDF
    This paper explores how established light festivals such as the Fête des Lumières in Lyon and Lumiere in Durham were first conceived by Robert-Houdin as illusory illuminations in the Loire in the 1950s. The research investigates the concept of spectacles as inversions of reality; re-situating light works within authenticity theory by exploring their manipulation of magical reality and irreality. The research uses the authors’ experience of event design to assess different interactions of light with the tri-dimensional architectural canvas, suggesting three classifications of animated projection mapping events: architecturally passive, architecturally physically active and architecturally metaphysically active. Each category has implications for how spectators perceive these installations. Architecturally passive events may use fairy tale content, evoking atavistic and affective responses, the ‘skinning’ of buildings with magical reality is designed to evoke perceptual duality, and the wobbling unfolding of irreality may ultimately create a state of ‘illuminated flow.

    Three-Dimensional, Tomographic Super-Resolution Fluorescence Imaging of Serially Sectioned Thick Samples

    Get PDF
    Three-dimensional fluorescence imaging of thick tissue samples with near-molecular resolution remains a fundamental challenge in the life sciences. To tackle this, we developed tomoSTORM, an approach combining single-molecule localization-based super-resolution microscopy with array tomography of structurally intact brain tissue. Consecutive sections organized in a ribbon were serially imaged with a lateral resolution of 28 nm and an axial resolution of 40 nm in tissue volumes of up to 50 µm×50 µm×2.5 µm. Using targeted expression of membrane bound (m)GFP and immunohistochemistry at the calyx of Held, a model synapse for central glutamatergic neurotransmission, we delineated the course of the membrane and fine-structure of mitochondria. This method allows multiplexed super-resolution imaging in large tissue volumes with a resolution three orders of magnitude better than confocal microscopy

    Real-world data confirm the effectiveness of caplacizumab in acquired thrombotic thrombocytopenic purpura

    Get PDF
    Acquired thrombotic thrombocytopenic purpura (aTTP) is a rare but life-threatening condition. In 2018, the nanobody caplacizumab was approved for the treatment of adults experiencing an acute episode of aTTP, in conjunction with plasma exchange (PEX) and immunosuppression for a minimum of 30 days after stopping daily PEX. We performed a retrospective, observational analysis on the use of caplacizumab in 60 patients from 29 medical centers in Germany during acute disease management. Caplacizumab led to a rapid normalization of the platelet count (median, 3 days; mean 3.78 days). One patient died after late treatment initiation due to aTTP-associated complications. In 2 patients with initial disease presentation and in 4 additional patients with laboratory signs of an exacerbation or relapse after the initial therapy, PEX-free treatment regimens could be established with overall favorable outcome. Caplacizumab is efficacious in the treatment of aTTP independent of timing and ancillary treatment modalities. Based on this real-world experience and published literature, we propose to administer caplacizumab immediately to all patients with an acute episode of aTTP. Treatment decisions regarding the use of PEX should be based on the severity of the clinical presentation and known risk factors. PEX might be dispensable in some patients
    • …
    corecore