79 research outputs found

    The derivation of performance expressions for communication protocols from timed Petri net models

    Get PDF
    Petri Net models have been extended in a variety of ways and have been used to prove the correctness and evaluate the performance of communication protocols. Several extensions have been proposed to model time. This work uses a form of Timed Petri Nets and presents a technique for symbolically deriving expressions which describe system performance. Unlike past work on performance evaluation of Petri Nets which assumes a priori knowledge of specific time delays, the technique presented here applies to a wide range of time delays so long as the delays satisfy a set of timing constraints. The technique is demonstrated using a simple communication protocol

    Distinguishing sequences for partially specified FSMs

    Get PDF
    Distinguishing Sequences (DSs) are used inmany Finite State Machine (FSM) based test techniques. Although Partially Specified FSMs (PSFSMs) generalise FSMs, the computational complexity of constructing Adaptive and Preset DSs (ADSs/PDSs) for PSFSMs has not been addressed. This paper shows that it is possible to check the existence of an ADS in polynomial time but the corresponding problem for PDSs is PSPACE-complete. We also report on the results of experiments with benchmarks and over 8 * 106 PSFSMs. © 2014 Springer International Publishing

    Teaching About Health Care Disparities in the Clinical Setting

    Get PDF
    Clinical teachers often observe interactions that may contribute to health care disparities, yet may hesitate to teach about them. A pedagogical model could help faculty structure teaching about health care disparities in the clinical setting, but to our knowledge, none have been adapted for this purpose. In this paper, we adapt an established model, Time-Effective Strategies for Teaching (TEST), to the teaching of health care disparities. We use several case scenarios to illustrate the core components of the model: diagnose the learner, teach rapidly to the learner’s need, and provide feedback. The TEST model is straightforward, easy to use, and enables the incorporation of teaching about health care disparities into routine clinical teaching

    Refined Interfaces for Compositional Verification

    Get PDF
    The compositional verification approach of Graf & Steffen aims at avoiding state space explosion for individual processes of a concurrent system. It relies on interfaces that express the behavioural constraints imposed on each process by synchronization with the other processes, thus preventing the exploration of states and transitions that would not be reachable in the global state space. Krimm & Mounier, and Cheung & Kramer proposed two techniques to generate such interfaces automatically. In this report, we propose a refined interface generation technique that derives the interface of a process automatically from the examination of (a subset of) concurrent processes. This technique is applicable to formalisms where concurrent processes are composed either using synchronization vectors or process algebra parallel composition operators (including those of CCS, CSP, muCRL, LOTOS, and E-LOTOS). We implemented this approach in the EXP.OPEN 2.0 tool of the CADP toolbox. Several experiments indicate state space reductions by more than two orders of magnitude for the largest processes

    The International Natural Product Sciences Taskforce (INPST) and the power of Twitter networking exemplified through #INPST hashtag analysis

    Get PDF
    Background: The development of digital technologies and the evolution of open innovation approaches have enabled the creation of diverse virtual organizations and enterprises coordinating their activities primarily online. The open innovation platform titled "International Natural Product Sciences Taskforce" (INPST) was established in 2018, to bring together in collaborative environment individuals and organizations interested in natural product scientific research, and to empower their interactions by using digital communication tools. Methods: In this work, we present a general overview of INPST activities and showcase the specific use of Twitter as a powerful networking tool that was used to host a one-week "2021 INPST Twitter Networking Event" (spanning from 31st May 2021 to 6th June 2021) based on the application of the Twitter hashtag #INPST. Results and Conclusion: The use of this hashtag during the networking event period was analyzed with Symplur Signals (https://www.symplur.com/), revealing a total of 6,036 tweets, shared by 686 users, which generated a total of 65,004,773 impressions (views of the respective tweets). This networking event's achieved high visibility and participation rate showcases a convincing example of how this social media platform can be used as a highly effective tool to host virtual Twitter-based international biomedical research events

    Evaluation of prognostic risk models for postoperative pulmonary complications in adult patients undergoing major abdominal surgery: a systematic review and international external validation cohort study

    Get PDF
    Background Stratifying risk of postoperative pulmonary complications after major abdominal surgery allows clinicians to modify risk through targeted interventions and enhanced monitoring. In this study, we aimed to identify and validate prognostic models against a new consensus definition of postoperative pulmonary complications. Methods We did a systematic review and international external validation cohort study. The systematic review was done in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched MEDLINE and Embase on March 1, 2020, for articles published in English that reported on risk prediction models for postoperative pulmonary complications following abdominal surgery. External validation of existing models was done within a prospective international cohort study of adult patients (≥18 years) undergoing major abdominal surgery. Data were collected between Jan 1, 2019, and April 30, 2019, in the UK, Ireland, and Australia. Discriminative ability and prognostic accuracy summary statistics were compared between models for the 30-day postoperative pulmonary complication rate as defined by the Standardised Endpoints in Perioperative Medicine Core Outcome Measures in Perioperative and Anaesthetic Care (StEP-COMPAC). Model performance was compared using the area under the receiver operating characteristic curve (AUROCC). Findings In total, we identified 2903 records from our literature search; of which, 2514 (86·6%) unique records were screened, 121 (4·8%) of 2514 full texts were assessed for eligibility, and 29 unique prognostic models were identified. Nine (31·0%) of 29 models had score development reported only, 19 (65·5%) had undergone internal validation, and only four (13·8%) had been externally validated. Data to validate six eligible models were collected in the international external validation cohort study. Data from 11 591 patients were available, with an overall postoperative pulmonary complication rate of 7·8% (n=903). None of the six models showed good discrimination (defined as AUROCC ≥0·70) for identifying postoperative pulmonary complications, with the Assess Respiratory Risk in Surgical Patients in Catalonia score showing the best discrimination (AUROCC 0·700 [95% CI 0·683–0·717]). Interpretation In the pre-COVID-19 pandemic data, variability in the risk of pulmonary complications (StEP-COMPAC definition) following major abdominal surgery was poorly described by existing prognostication tools. To improve surgical safety during the COVID-19 pandemic recovery and beyond, novel risk stratification tools are required. Funding British Journal of Surgery Society

    Radiation characteristics of a dielectric-loaded rectangular horn

    No full text
    corecore