388 research outputs found

    Raspberry PI Based Artificial Vision Assisting System for Blind Persons

    Full text link
    The main aim of this paper is to implement a system that will help blind person. This system is used by a RASPBERRY PI circuit to provide for the identification of the objects, the first level localization. It also incorporates additional components to provide more refined location and orientation information. The input process is to capture every object around 10m and it is convert into the output processing in voice command which is adopted in Bluetooth headset which is used by blind people using RASPBERRY PI component

    Formulation and Evaluation of Sustained Release Microspheres of Venlafaxine Hydrochloride.

    Get PDF
    The goal of a sustained release dosage form is to maintain therapeutic blood or tissue levels of the drug for an extended and specified period of time. This is generally accomplished by attempting to obtain "zero-order" release from the dosage form. Zero-order release constitutes drug release from the dosage form which is independent of the amount of drug in the delivery system (i.e. a constant release rate). Sustained-release systems generally do not attain this type of release and usually try to mimic zero-order release by providing drug in a slow first-order fashion (i.e., concentration release dependent). Systems that are designated as prolonged release can also be considered as attempts at achieving sustained-release delivery. Based on the in vitro drug released characteristics, entrapment efficiency and t25, t50 and t90 values, the formulation F3 was found to be best formulation. By increasing the concentration of polymer, decreased the rate of drug released. According to stability study it was found that there was no variation in Percentage yield, Entrapment efficiency, and in vitro drug released profile of selected formulation F3 at specified period. The formulation F3 was concluded best formulation among the formulations were prepared

    The role of molecular chaperonins in warm ischemia and reperfusion injury in the steatotic liver: A proteomic study

    Get PDF
    BACKGROUND: The molecular basis of the increased susceptibility of steatotic livers to warm ischemia/reperfusion (I/R) injury during transplantation remains undefined. Animal model for warm I/R injury was induced in obese Zucker rats. Lean Zucker rats provided controls. Two dimensional differential gel electrophoresis was performed with liver protein extracts. Protein features with significant abundance ratios (p < 0.01) between the two cohorts were selected and analyzed with HPLC/MS. Proteins were identified by Uniprot database. Interactive protein networks were generated using Ingenuity Pathway Analysis and GRANITE software. RESULTS: The relative abundance of 105 proteins was observed in warm I/R injury. Functional grouping revealed four categories of importance: molecular chaperones/endoplasmic reticulum (ER) stress, oxidative stress, metabolism, and cell structure. Hypoxia up-regulated 1, calcium binding protein 1, calreticulin, heat shock protein (HSP) 60, HSP-90, and protein disulfide isomerase 3 were chaperonins significantly (p < 0.01) down-regulated and only one chaperonin, HSP-1was significantly upregulated in steatotic liver following I/R. CONCLUSION: Down-regulation of the chaperones identified in this analysis may contribute to the increased ER stress and, consequently, apoptosis and necrosis. This study provides an initial platform for future investigation of the role of chaperones and therapeutic targets for increasing the viability of steatotic liver allografts

    The microaerophilic microbiota of de-novo paediatric inflammatory bowel disease: the BISCUIT study

    Get PDF
    &lt;p&gt;Introduction: Children presenting for the first time with inflammatory bowel disease (IBD) offer a unique opportunity to study aetiological agents before the confounders of treatment. Microaerophilic bacteria can exploit the ecological niche of the intestinal epithelium; Helicobacter and Campylobacter are previously implicated in IBD pathogenesis. We set out to study these and other microaerophilic bacteria in de-novo paediatric IBD.&lt;/p&gt; &lt;p&gt;Patients and Methods: 100 children undergoing colonoscopy were recruited including 44 treatment naïve de-novo IBD patients and 42 with normal colons. Colonic biopsies were subjected to microaerophilic culture with Gram-negative isolates then identified by sequencing. Biopsies were also PCR screened for the specific microaerophilic bacterial groups: Helicobacteraceae, Campylobacteraceae and Sutterella wadsworthensis.&lt;/p&gt; &lt;p&gt;Results: 129 Gram-negative microaerophilic bacterial isolates were identified from 10 genera. The most frequently cultured was S. wadsworthensis (32 distinct isolates). Unusual Campylobacter were isolated from 8 subjects (including 3 C. concisus, 1 C. curvus, 1 C. lari, 1 C. rectus, 3 C. showae). No Helicobacter were cultured. When comparing IBD vs. normal colon control by PCR the prevalence figures were not significantly different (Helicobacter 11% vs. 12%, p = 1.00; Campylobacter 75% vs. 76%, p = 1.00; S. wadsworthensis 82% vs. 71%, p = 0.312).&lt;/p&gt; &lt;p&gt;Conclusions: This study offers a comprehensive overview of the microaerophilic microbiota of the paediatric colon including at IBD onset. Campylobacter appear to be surprisingly common, are not more strongly associated with IBD and can be isolated from around 8% of paediatric colonic biopsies. S. wadsworthensis appears to be a common commensal. Helicobacter species are relatively rare in the paediatric colon.&lt;/p&gt

    Unraveling the intriguing potential of protein-rich microbial biostimulants for horticultural crops

    Get PDF
    Nutritional security and minimizing the impact of farming practices on the environment are major challenges in modern farming systems. Currently, the horticulture sector is growing fast and moving towards sustainability and profitability. Indiscriminate and improper use of chemical inputs to ensure high yields of horticultural products could lead to significant contamination of soil and water bodies. Under these circumstances, farmers must optimize their input management to reduce pollution and preserve the economic margin by following sustainable production practices. The use of precision horticulture techniques is more sustainable than conventional to intensive farming methods. Among the various eco-friendly inputs, plant biostimulants are highly effective and can enhance plant growth and production as well as mitigate the adverse effects of abiotic stressors. Protein Hydrolysates (PHs) are a significant class of plant biostimulants based on amino acid and peptide mixtures. Because of their beneficial effects on crop performance, PHs has drawn increased amounts of attention recently. Compared with other biostimulants microbial biostimulants are more prevalent in crop production. A new approach is the formulation of a mixture of plant growth-promoting microorganisms/microbe-derived metabolites and protein hydrolysates as single biostimulants, to nourish the soil, plants and microbes. This review presents a thorough summary of recent research on the postulated modes of action of PHs and microbial biostimulants in horticultural crops. Furthermore, this study highlights the potential of protein hydrolysates and microbial biostimulants and the potential of the protein-rich microbial biostimulants to make horticulture more profitable and to safeguard the environment

    Biostimulants in protected cultivation: Unlocking growth potential in horticultural crops

    Get PDF
    Plant biostimulants are materials or microorganisms with high nutrient contents that are applied to plants to promote seed germination, stimulate growth and maturation and increase nutrient use efficiency. Biostimulants such as humic acid, seaweed extracts, protein hydrolysates, microbial formulations and inorganic biostimulants are used to increase plant growth, nutrient absorption and stress tolerance. Humic biostimulants enhance the nourishment of roots, while protein-derived biostimulants affect nitrogen uptake and the assimilation process. Microbial stimulants can act through various direct and indirect mechanisms, whereas seaweed biostimulants increase microbial activity, improve nutrient uptake and promote plant growth and soil health. By improving nutrient use efficiency, enhancing stress tolerance and promoting overall crop quality, biostimulants offer sustainable alternatives to conventional inputs. Biostimulants are predominantly used for high-value horticultural crops to improve flowering, yield, quality and shelf-life. Many vegetable growers face challenges due to adverse weather conditions, leading to the adoption of protected cultivation as a high-intensity method to enable year-round production. Biostimulants have been proposed as an effective strategy to promote ecofriendly agriculture, alleviate biotic and abiotic stresses under protected cultivation and reduce the cost of chemical inputs. This review describes the types and functions of biostimulants and their effects on major horticultural crops, with an emphasis on their applications in structured cultivation systems

    Microbiota of De-Novo Pediatric IBD : Increased Faecalibacterium Prausnitzii and Reduced Bacterial Diversity in Crohn's But Not in Ulcerative Colitis

    Get PDF
    ACKNOWLEDGMENTS We are grateful for the expertise of our sequencing provider NewGene and in particular for the support and help of Dr Jonathan Coxhead.Mrs Karen McIntyre and Dr Dagmar Kastner were invaluable in identifying patients for recruitment in Dundee. Mrs Ann Morrice provided administrative support in Aberdeen. Dr Paul Henderson gave helpful comments on the manuscript. We appreciate the generosity of the families who freely gave their time and samples to make this study possible and the theatre staff of all centers who allowed time for sample collection during busy endoscopy lists.Peer reviewedPublisher PD

    Effect of organic and inorganic nutrients on rice (Oryza sativa var. CO 51) productivity and soil fertility in the Western zone of Tamil Nadu, India

    Get PDF
    In sustainable agriculture, to ensure high-quality food production, a combination of organic and inorganic nutrient sources are required. During the winter season of 2020, a field experiment was undertaken in the western zone of Tamil Nadu to assess the effects of organics and inorganics on the growth, yield, and soil properties of rice, Oryza sativa var. CO 51. The experiment was framed in Random Block Design (RBD) comprising of 8 treatments viz., Recommended dose of fertilizer Soil Test Crop Response (STCR) approach (T1), RDF 75 % + Farm yard manure @ 12.5 t ha-1 (T2), T2 + Seed treatment with Azospirillum and Phosphobacteria + Soil application of AM fungi (T3), RDF 75 % + Vermicompost @ 5 t ha-1 (T4), T4 + Seed treatment with Azospirillum and Phosphobacteria + Soil application of AM fungi (T5), FYM @ 12.5 t ha-1 + Seed treatment with Azospirillum and Phosphobacteria + Soil application of AM fungi (T6), Vermicompost @ 5 t ha-1+ Seed treatment with Azospirillum and Phosphobacteria + Soil application of AM fungi (T7) and absolute control (T8) , replicated thrice. Among the integrated nutrient management practices, T5 proved its superiority over other treatments with respect to growth and physiological parameters followed by T3. This would have been because of the solubilization of phosphorus in the soil by AM organisms which is made accessible for crop growth. Utilization of biofertilizer enhanced the N availability and solubilized the inaccessible phosphorus, which thus recorded higher N accessibility and better phosphorus uptake when applied along with a recommended dose of fertilizer for rice.

    An algorithm to find similar internal sequence repeats

    Get PDF
    In recent years, identification of sequence patterns has been given immense importance to understand better their significance with respect to genomic organization and evolutionary processes. To this end, an algorithm has been derived to identify all similar sequence repeats present in a protein sequence. The proposed algorithm is useful to correlate the three-dimensional structure of various similar sequence repeats available in the Protein Data Bank against the same sequence repeats present in other databases like SWISS-PROT, PIR and Genome databases

    Effects of biostimulants on growth, yield and quality of Tomato (Solanum lycopersicum L) intercropped with palmyrah (Borrassus flabellifer L)

    Get PDF
    The present study aimed to investigate the impact of bio-stimulants on the growth and yield of Tomato (var. PKM-1) as an intercrop under Palmyrah plantation at the College Orchard of the Department of Horticulture, VOC Agricultural College and Research Institute, Killikulam, Thoothukudi district of Tamil Nadu during 2023-24. The maximum plant height at 30 (52.80 cm), 60 (73.40 cm) and 90 days after transplanting (86.47 cm), number of branches at 30 days after transplanting (3.20), 60 days after transplanting (7.60) and 90 days after transplanting (8.40), early flowering (26.2 days), 50 % flowering (39.8 days), individual fruit weight (30.29 g), number of fruits per plant (28.6), yield of fruits per plant (0.87 kg), yield per ha (31.97 ton per ha), chlorophyll a (0.89 mg per g), chlorophyll b (1.28 mg per g), total chlorophyll (1.65 mg per g), TSS (5.54° Brix), ascorbic acid content (23.87 mg per 100g), titrable acidity (0.65 %), lycopene content (2.47 mg per 100g)was recorded in (the 3 %) Panchagavya spray treatment. The salient findings revealed that among the different treatments, a 3 %Panchagavya spray demonstrated superiority in promoting the growth and yield of Tomato as an intercrop under Palmyrah in the dry land conditions of the Thoothukudi district. These findings highlight the potential of incorporating organic practices into intercropping systems suitable for arid and semi-arid regions
    corecore