59 research outputs found

    Laser-driven pointed acceleration of electrons with preformed plasma lens

    Full text link
    The simultaneous laser-driven acceleration and angular manipulation of the fast electron beam is experimentally demonstrated. The bunch of multi-MeV energy charged particles is generated during the propagation of the femtosecond laser pulse through the near-critical plasma slab accompanied by plasma channeling. Plasma is formed by the controlled breakdown of a thin-tape target by a powerful nanosecond prepulse. The electron beam pointing approach is based on the refraction of a laser pulse in the presence of a strong radial density gradient in the breakdown of the tape with a small displacement of the femtosecond laser beam relative to the breakdown symmetry axis. A shift of several micrometers makes it possible to achieve beam deflection by an angle up to 10 degrees with acceptable beam charge and spectrum conservation. This opens up opportunities for in-situ applications for scanning objects with an electron beam and the multistage electron beam energy gain in consecutive laser accelerators without bulk magnetic optics for particles. Experimental findings are supported by numerical Particle-In-Cell calculations of laser-plasma acceleration and hydrodynamic simulations.Comment: Submitted to PPC

    Low loss volume modes in a lamellar hyperbolic metamaterial slab

    Get PDF
    We have studied, both theoretically and experimentally, the excitation of volume modes in a lamellar metal/dielectric metamaterial with hyperbolic dispersion. The highly efficient light penetration through tens of metamaterial layers is consistent with a relatively low propagation loss. The volume modes were found to be highly sensitive to the surface roughness of the layers, which can be a detrimental factor in device applications.ITMO University; Australian Research Council; Australian National Fabrication Facility; National Science Foundation (1646789, 1830886, 1856515); U.S. Department of Defense (W911nf1810472); Air Force Office of Scientific Research (FA9550-18-1-0417)

    Energy fluctuations in a biharmonically driven nonlinear system

    Get PDF
    We study the fluctuations of work done and dissipated heat of a Brownian particle in a symmetric double well system. The system is driven by two periodic input signals that rock the potential simultaneously. Confinement in one preferred well can be achieved by modulating the relative phase between the drives. We show that in the presence of pumping the stochastic resonance signal is enhanced when analyzed in terms of the average work done on the system per cycle. This is in contrast to the case when pumping is achieved by applying an external static bias, which degrades resonance. We analyze the nature of work and heat fluctuations and show that the steady state fluctuation theorem holds in this system.Comment: 13 pages, 14 figures, revised manuscrip

    Carvacrol, a Food-Additive, Provides Neuroprotection on Focal Cerebral Ischemia/Reperfusion Injury in Mice

    Get PDF
    Carvacrol (CAR), a naturally occurring monoterpenic phenol and food additive, has been shown to have antimicrobials, antitumor, and antidepressant-like activities. A previous study demonstrated that CAR has the ability to protect liver against ischemia/reperfusion injury in rats. In this study, we investigated the protective effects of CAR on cerebral ischemia/reperfusion injury in a middle cerebral artery occlusion mouse model. We found that CAR (50 mg/kg) significantly reduced infarct volume and improved neurological deficits after 75 min of ischemia and 24 h of reperfusion. This neuroprotection was in a dose-dependent manner. Post-treatment with CAR still provided protection on infarct volume when it was administered intraperitoneally at 2 h after reperfusion; however, intracerebroventricular post-treatment reduced infarct volume even when the mice were treated with CAR at 6 h after reperfusion. These findings indicated that CAR has an extended therapeutic window, but delivery strategies may affect the protective effects of CAR. Further, we found that CAR significantly decreased the level of cleaved caspase-3, a marker of apoptosis, suggesting the anti-apoptotic activity of CAR. Finally, our data indicated that CAR treatment increased the level of phosphorylated Akt and the neuroprotection of CAR was reversed by a PI3K inhibitor LY-294002, demonstrating the involvement of the PI3K/Akt pathway in the anti-apoptotic mechanisms of CAR. Due to its safety and wide use in the food industry, CAR is a promising agent to be translated into clinical trials

    Formation of the dendritic domain structures in lithium niobate single crystals

    Full text link
    Исследование роста дендритных доменных структур проведено в монокристаллах конгруэнтного ниобата лития (CLN) с искусственным диэлектрическим слоем при переключении поляризации при повышенных температурах. С помощью in situ визуализации проанализирована кинетика доменной структуры. Определены глубина и геометрические параметры сформированных доменных структур.The growth of dendritic domain structures was studied in congruent lithium niobate (CLN) single crystals during polarization reversal with artificial dielectric layer at elevated temperatures. Using in situ visualization domain structure kinetics was analyzed. The depth and geometric parameters of static domain structures was identified.В работе использовалось оборудование УЦКП "Современные нанотехнологии" УрФУ. Работа выполнена при финансовой поддержке Российского Научного Фонда (грант 14-12-00826)

    Composition of Human Skin Microbiota Affects Attractiveness to Malaria Mosquitoes

    Get PDF
    The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission, which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the current study we set out to unravel the strong association between this mosquito species and human beings, as it is determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for protection against vectors of malaria and other infectious diseases

    Renormalization group flows and continual Lie algebras

    Full text link
    We study the renormalization group flows of two-dimensional metrics in sigma models and demonstrate that they provide a continual analogue of the Toda field equations based on the infinite dimensional algebra G(d/dt;1). The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time. We provide the general solution of the renormalization group flows in terms of free fields, via Backlund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Z_n to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra G(d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown.Comment: latex, 73pp including 14 eps fig

    Light guiding and switching using eccentric core-shell geometries

    Get PDF
    High Refractive Index (HRI) dielectric nanoparticles have been proposed as an alternative to metallic ones due to their low absorption and magnetodielectric response in the VIS and NIR ranges. For the latter, important scattering directionality effects can be obtained. Also, systems constituted by dimers of HRI dielectric nanoparticles have shown to produce switching effects by playing with the polarization, frequency or intensity of the incident radiation. Here, we show that scattering directionality effects can be achieved with a single eccentric metallo-HRI dielectric core-shell nanoparticle. As an example, the effect of the metallic core displacements for a single Ag-Si core-shell nanoparticle has been analyzed. We report rotation of the main scattering lobe either clockwise or counterclockwise depending on the polarization of the incident radiation leading to new scattering configurations for switching purposes. Also, the efficiency of the scattering directionality can be enhanced. Finally, chains of these scattering units have shown good radiation guiding effects, and for 1D periodic arrays, redirection of diffracted intensity can be observed as a consequence of blazing effects. The proposed scattering units constitute new blocks for building systems for optical communications, solar energy harvesting devices and light guiding at the nanoscale level.This research was supported by MICINN (Spanish Ministry of Science and Innovation, project FIS2013-45854-P) and Fundación Iberdrola Espan~a, Call for Research on Energy and the Environment Grants. Á.I.B. and Y.G. want to express her gratitude to the University of Cantabria for their PhD grants

    Wave scattering by metal-dielectric multilayer structures with gain

    No full text
    We study wave scattering by multilayer metal-dielectric structures of a finite extent characterized by a hyperbolic-like dispersion. We find the regimes of wave propagation when substantial compensation of losses becomes possible with the use of a gain medium with realistic parameters. We discuss the Purcell effect in these structures and its possible implications on the performance of the loss compensation.This work was supported by the Ministry of Education and Science of the Russian Federation (project no. 11.G34.31.0020, state contract no. 2014/190, contract no. 3.561.2014/K), by the Council for an Increase in the Competitiveness of the Leading Uni versities of the Russian Federation (project no. 074 U01), by the Dynasty Foundation (Russia), and by the Australian Research Council (Future Fellowship and Discovery Project Programs)
    corecore