196 research outputs found

    The Genetic History of Indigenous Populations of the Peruvian and Bolivian Altiplano: The Legacy of the Uros

    Get PDF
    The Altiplano region of the South American Andes is marked by an inhospitable climate to which the autochthonous human populations adapted and then developed great ancient civilizations, such as the Tiwanaku culture and the Inca Empire. Since pre-Columbian times, different rulers established themselves around the Titicaca and Poopo Lakes. By the time of the arrival of Spaniards, Aymara and Quechua languages were predominant on the Altiplano under the rule of the Incas, although the occurrence of other spoken languages, such as Puquina and Uruquilla, suggests the existence of different ethnic groups in this region. In this study, we focused on the pre-Columbian history of the autochthonous Altiplano populations, particularly the Uros ethnic group, which claims to directly descend from the first settlers of the Andes, and some linguists suggest they might otherwise be related to Arawak speaking groups from the Amazon. Using phylogeographic, population structure and spatial genetic analyses of Y-chromosome and mtDNA data, we inferred the genetic relationships among Uros populations (Los Uros from Peru, Uru-Chipaya and Uru-Poopo from Bolivia), and compared their haplotype profiles with eight Aymara, nine Quechua and two Arawak (Machiguenga and Yanesha) speaking populations from Peru and Bolivia. Our results indicated that Uros populations stand out among the Altiplano populations, while appearing more closely related to the Aymara and Quechua from Lake Titicaca and surrounding regions than to the Amazon Arawaks. Moreover, the Uros populations from Peru and Bolivia are genetically differentiated from each other, indicating a high heterogeneity in this ethnic group. Finally, our results support the distinctive ancestry for the Uros populations of Peru and Bolivia, which are likely derived from ancient Andean lineages that were partially replaced during more recent farming expansion events and the establishment of complex civilizations in the Andes

    Benznidazole biotransformation and multiple targets in <i>Trypanosoma</i> cruzi revealed by metabolomics

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;&lt;p&gt;&lt;/p&gt; The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn). Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methodology/Principal findings&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, γ-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions/significance&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi

    Identification of Melatonin-Regulated Genes in the Ovine Pituitary Pars Tuberalis, a Target Site for Seasonal Hormone Control

    Get PDF
    The pars tuberalis (PT) of the pituitary gland expresses a high density of melatonin (MEL) receptors and is believed to regulate seasonal physiology by decoding changes in nocturnal melatonin secretion. Circadian clock genes are known to be expressed in the PT in response to the decline (Per1) and onset (Cry1) of MEL secretion, but to date little is known of other molecular changes in this key MEL target site. To identify transcriptional pathways that may be involved in the diurnal and photoperiod-transduction mechanism, we performed a whole genome transcriptome analysis using PT RNA isolated from sheep culled at three time points over the 24-h cycle under either long or short photoperiods. Our results reveal 153 transcripts where expression differs between photoperiods at the light-dark transition and 54 transcripts where expression level was more globally altered by photoperiod (all time points combined). Cry1 induction at night was associated with up-regulation of genes coding for NeuroD1 (neurogenic differentiation factor 1), Pbef / Nampt (nicotinamide phosphoribosyltransferase) , Hif1α (hypoxia-inducible factor-1α), and Kcnq5 (K channel) and down-regulation of Rorβ, a key clock gene regulator. Using in situ hybridization, we confirmed day-night differences in expression for Pbef / Nampt, NeuroD1, and Rorβ in the PT. Treatment of sheep with MEL increased PT expression for Cry1, Pbef / Nampt, NeuroD1, and Hif1α, but not Kcnq5. Our data thus reveal a cluster of Cry1-associated genes that are acutely responsive to MEL and novel transcriptional pathways involved in MEL action in the PT

    Clinical and Biomarker Responses to BI 655064, an Antagonistic Anti-CD40 Antibody, in Patients With Active Lupus Nephritis:A Randomized, Double-Blind, Placebo-Controlled, Phase II Trial

    Get PDF
    Objective: To characterize its dose-response relationship, BI 655064 (an anti-CD40 monoclonal antibody) was tested as an add-on to mycophenolate and glucocorticoids in patients with active lupus nephritis (LN).Methods: A total of 121 patients were randomized (2:1:1:2) to receive placebo or BI 655064 120, 180, or 240 mg and received a weekly loading dose for 3 weeks followed by dosing every 2 weeks for the 120 and 180 mg groups, and 120 mg weekly for the 240 mg group. The primary endpoint was complete renal response (CRR) at week 52. Secondary endpoints included CRR at week 26.Results: A dose-response relationship with CRR at week 52 was not shown (BI 655064 120 mg, 38.3%; 180 mg, 45.0%; 240 mg, 44.6%; placebo, 48.3%). At week 26, 28.6% (120 mg), 50.0% (180 mg), 35.0% (240 mg), and 37.5% (placebo) achieved CRR. The unexpected high placebo response prompted a post hoc analysis evaluating confirmed CRR (cCRR, at weeks 46 and 52). cCRR was achieved in 22.5% (120 mg), 44.3% (180 mg), 38.2% (240 mg), and 29.1% (placebo) of patients. Most patients reported ≥1 adverse event (BI 655064, 85.7–95.0%; placebo, 97.5%), most frequently infections and infestations (BI 655064 61.9–75.0%; placebo 60%). Compared with other groups, higher rates of serious (20% vs. 7.5–10%) and severe infections (10% vs. 4.8–5.0%) were reported with 240 mg BI 655064.Conclusion: The trial failed to demonstrate a dose-response relationship for the primary CRR endpoint. Post hoc analyses suggest a potential benefit of BI 655064 180 mg in patients with active LN.</p

    Impact of Metabolic Regulators on the Expression of the Obesity Associated Genes FTO and NAMPT in Human Preadipocytes and Adipocytes

    Get PDF
    FTO and NAMPT/PBEF/visfatin are thought to play a role in obesity but their transcriptional regulation in adipocytes is not fully understood. In this study, we evaluated the transcriptional regulation of FTO and NAMPT in preadipocytes and adipocytes by metabolic regulators.We assessed FTO mRNA expression during human adipocyte differentiation of Simpson-Golabi-Behmel syndrome (SGBS) cells and primary subcutaneous preadipocytes in vitro and evaluated the effect of the metabolic regulators glucose, insulin, dexamethasone, IGF-1 and isoproterenol on FTO and NAMPT mRNA expression in SGBS preadipocytes and adipocytes. FTO mRNA levels were not significantly modulated during adipocyte differentiation. Also, metabolic regulators had no impact on FTO expression in preadipocytes or adipocytes. In SGBS preadipocytes NAMPT expression was more than 3fold induced by dexamethasone and isoproterenol and 1.6fold by dexamethasone in adipocytes. Complete glucose restriction caused an increase in NAMPT mRNA expression by more than 5fold and 1.4fold in SGBS preadipocytes and adipocytes, respectively.FTO mRNA expression is not significantly affected by differentiation or metabolic regulators in human adipocytes. The stimulation of NAMPT expression by dexamethasone, isoproterenol and complete glucose restriction may indicate a regulation of NAMPT by metabolic stress, which was more pronounced in preadipocytes compared to mature adipocytes

    Nicotinamide Phosphoribosyltransferase/Visfatin Does Not Catalyze Nicotinamide Mononucleotide Formation in Blood Plasma

    Get PDF
    Nicotinamide (Nam) phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in mammalian NAD synthesis, catalyzing nicotinamide mononucleotide (NMN) formation from Nam and 5-phosphoribosyl 1-pyrophosphate (PRPP). NAMPT has also been described as an adipocytokine visfatin with a variety of actions, although physiological significance of this protein remains unclear. It has been proposed that possible actions of visfatin are mediated through the extracellular formation of NMN. However, we did not detect NMN in mouse blood plasma, even with a highly specific and sensitive liquid chromatography/tandem mass spectrometry. Furthermore, there is no or little ATP, the activator of NAMPT, in extracellular spaces. We thus questioned whether visfatin catalyzes the in situ formation of NMN under such extracellular milieus. To address this question, we here determined Km values for the substrates Nam and PRPP in the NAMPT reaction without or with ATP using a recombinant human enzyme and found that 1 mM ATP dramatically decreases Km values for the substrates, in particular PRPP to its intracellular concentration. Consistent with the kinetic data, only when ATP is present at millimolar levels, NAMPT efficiently catalyzed the NMN formation at the intracellular concentrations of the substrates. Much lower concentrations of Nam and almost the absence of PRPP and ATP in the blood plasma suggest that NAMPT should not efficiently catalyze its reaction under the extracellular milieu. Indeed, NAMPT did not form NMN in the blood plasma. From these kinetic analyses of the enzyme and quantitative determination of its substrates, activator, and product, we conclude that visfatin does not participate in NMN formation under the extracellular milieus. Together with the absence of NMN in the blood plasma, our conclusion does not support the concept of “NAMPT-mediated systemic NAD biosynthesis.” Our study would advance current understanding of visfatin physiology

    Keratinocyte-Targeted Overexpression of the Glucocorticoid Receptor Delays Cutaneous Wound Healing

    Get PDF
    Delayed wound healing is one of the most common secondary adverse effects associated to the therapeutic use of glucocorticoid (GC) analogs, which act through the ligand-dependent transcription factor GC-receptor (GR). GR function is exerted through DNA-binding-dependent and –independent mechanisms, classically referred to as transactivation (TA) and transrepression (TR). Currently both TA and TR are thought to contribute to the therapeutical effects mediated by GR; however their relative contribution to unwanted side effects such as delayed wound healing is unknown. We evaluated skin wound healing in transgenic mice with keratinocyte-restricted expression of either wild type GR or a mutant GR that is TA-defective but efficient in TR (K5-GR and K5-GR-TR mice, respectively). Our data show that at days (d) 4 and 8 following wounding, healing in K5-GR mice was delayed relative to WT, with reduced recruitment of granulocytes and macrophages and diminished TNF-α and IL-1β expression. TGF-β1 and Kgf expression was repressed in K5-GR skin whereas TGF-β3 was up-regulated. The re-epithelialization rate was reduced in K5-GR relative to WT, as was formation of granulation tissue. In contrast, K5-GR-TR mice showed delays in healing at d4 but re-established the skin breach at d8 concomitant with decreased repression of pro-inflammatory cytokines and growth factors relative to K5-GR mice. Keratinocytes from both transgenic mice closed in vitro wounds slower relative to WT, consistent with the in vivo defects in cell migration. Overall, the delay in the early stages of wound healing in both transgenic models is similar to that elicited by systemic treatment with dexamethasone. Wound responses in the transgenic keratinocytes correlated with reduced ERK activity both in vivo and in vitro. We conclude that the TR function of GR is sufficient for negatively regulating early stages of wound closure, while TA by GR is required for delaying later stages of healing

    11β-Hydroxysteroid Dehydrogenase-1 Is a Novel Regulator of Skin Homeostasis and a Candidate Target for Promoting Tissue Repair

    Get PDF
    11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) catalyzes the interconversion of cortisone and cortisol within the endoplasmic reticulum. 11β-HSD1 is expressed widely, most notably in the liver, adipose tissue, and central nervous system. It has been studied intensely over the last 10 years because its activity is reported to be increased in visceral adipose tissue of obese people. Epidermal keratinocytes and dermal fibroblasts also express 11β-HSD1. However, the function of the enzymatic activity 11β-HSD1 in skin is not known. We found that 11β-HSD1 was expressed in human and murine epidermis, and this expression increased as keratinocytes differentiate. The expression of 11β-HSD1 by normal human epidermal keratinocytes (NHEKs) was increased by starvation or calcium-induced differentiation in vitro. A selective inhibitor of 11β-HSD1 promoted proliferation of NHEKs and normal human dermal fibroblasts, but did not alter the differentiation of NHEKs. Topical application of selective 11β-HSD1 inhibitor to the dorsal skin of hairless mice caused proliferation of keratinocytes. Taken together, these data suggest that 11β-HSD1 is involved in tissue remodeling of the skin. This hypothesis was further supported by the observation that topical application of the selective 11β-HSD1 inhibitor enhanced cutaneous wound healing in C57BL/6 mice and ob/ob mice. Collectively, we conclude that 11β-HSD1 is negatively regulating the proliferation of keratinocytes and fibroblasts, and cutaneous wound healing. Hence, 11β-HSD1 might maintain skin homeostasis by regulating the proliferation of keratinocytes and dermal fibroblasts. Thus 11β-HSD1 is a novel candidate target for the design of skin disease treatments
    corecore