3,128 research outputs found

    Electrostatics in the Stability and Misfolding of the Prion Protein: Salt Bridges, Self-Energy, and Solvation

    Full text link
    Using a recently developed mesoscopic theory of protein dielectrics, we have calculated the salt bridge energies, total residue electrostatic potential energies, and transfer energies into a low dielectric amyloid-like phase for 12 species and mutants of the prion protein. Salt bridges and self energies play key roles in stabilizing secondary and tertiary structural elements of the prion protein. The total electrostatic potential energy of each residue was found to be invariably stabilizing. Residues frequently found to be mutated in familial prion disease were among those with the largest electrostatic energies. The large barrier to charged group desolvation imposes regional constraints on involvement of the prion protein in an amyloid aggregate, resulting in an electrostatic amyloid recruitment profile that favours regions of sequence between alpha helix 1 and beta strand 2, the middles of helices 2 and 3, and the region N-terminal to alpha helix 1. We found that the stabilization due to salt bridges is minimal among the proteins studied for disease-susceptible human mutants of prion protein

    The surgical treatment of Parkinson's disease cryothalamectomy

    Get PDF
    Click on the link to view

    Influx of pwm-modulation upon torque harmonics of induction machines

    Get PDF
    Influx of pwm-modulation upon torque harmonics of induction machines

    Minimal distance transformations between links and polymers: Principles and examples

    Full text link
    The calculation of Euclidean distance between points is generalized to one-dimensional objects such as strings or polymers. Necessary and sufficient conditions for the minimal transformation between two polymer configurations are derived. Transformations consist of piecewise rotations and translations subject to Weierstrass-Erdmann corner conditions. Numerous examples are given for the special cases of one and two links. The transition to a large number of links is investigated, where the distance converges to the polymer length times the mean root square distance (MRSD) between polymer configurations, assuming curvature and non-crossing constraints can be neglected. Applications of this metric to protein folding are investigated. Potential applications are also discussed for structural alignment problems such as pharmacophore identification, and inverse kinematic problems in motor learning and control.Comment: Submitted to J. Phys.:Condens. Matte

    Lazy pattern matching in the ML language

    Full text link

    Evaluating the performance of model transformation styles in Maude

    Get PDF
    Rule-based programming has been shown to be very successful in many application areas. Two prominent examples are the specification of model transformations in model driven development approaches and the definition of structured operational semantics of formal languages. General rewriting frameworks such as Maude are flexible enough to allow the programmer to adopt and mix various rule styles. The choice between styles can be biased by the programmer’s background. For instance, experts in visual formalisms might prefer graph-rewriting styles, while experts in semantics might prefer structurally inductive rules. This paper evaluates the performance of different rule styles on a significant benchmark taken from the literature on model transformation. Depending on the actual transformation being carried out, our results show that different rule styles can offer drastically different performances. We point out the situations from which each rule style benefits to offer a valuable set of hints for choosing one style over the other
    corecore