The calculation of Euclidean distance between points is generalized to
one-dimensional objects such as strings or polymers. Necessary and sufficient
conditions for the minimal transformation between two polymer configurations
are derived. Transformations consist of piecewise rotations and translations
subject to Weierstrass-Erdmann corner conditions. Numerous examples are given
for the special cases of one and two links. The transition to a large number of
links is investigated, where the distance converges to the polymer length times
the mean root square distance (MRSD) between polymer configurations, assuming
curvature and non-crossing constraints can be neglected. Applications of this
metric to protein folding are investigated. Potential applications are also
discussed for structural alignment problems such as pharmacophore
identification, and inverse kinematic problems in motor learning and control.Comment: Submitted to J. Phys.:Condens. Matte