122 research outputs found
Endophenotypes in a Dynamically Connected Brain
We examined the longitudinal genetic architecture of three parameters of functional brain connectivity. One parameter described overall connectivity (synchronization likelihood, SL). The two others were derived from graph theory and described local (clustering coefficient, CC) and global (average path length, L) aspects of connectivity. We measured resting state EEG in 1,438 subjects from four age groups of about 16, 18, 25 and 50Â years. Developmental curves for SL and L indicate that connectivity is more random at adolescence and old age, and more structured in middle-aged adulthood. Individual variation in SL and L were moderately to highly heritable at each age (SL: 40â82%; L: 29â63%). Genetic factors underlying these phenotypes overlapped. CC was also heritable (25â49%) but showed no systematic overlap with SL and L. SL, CC, and L in the alpha band showed high phenotypic and genetic stability from 16 to 25Â years. Heritability for parameters in the beta band was lower, and less stable across ages, but genetic stability was high. We conclude that the connectivity parameters SL, CC, and L in the alpha band show the hallmarks of a good endophenotype for behavior and developmental disorders
The sleep EEG spectrum is a sexually dimorphic marker of general intelligence
The shape of the EEG spectrum in sleep relies on genetic and anatomical factors and forms an individual âEEG fingerprintâ. Spectral components of EEG were shown to be connected to mental ability both in sleep and wakefulness. EEG sleep spindle correlates of intelligence, however, exhibit a sexual dimorphism, with a more pronounced association to intelligence in females than males. In a sample of 151 healthy individuals, we investigated how intelligence is related to spectral components of full-night sleep EEG, while controlling for the effects of age. A positive linear association between intelligence and REM anterior beta power was found in females but not males. Transient, spindle-like âREM beta tuftsâ are described in the EEG of healthy subjects, which may reflect the functioning of a recently described cingular-prefrontal emotion and motor regulation network. REM sleep frontal high delta power was a negative correlate of intelligence. NREM alpha and sigma spectral power correlations with intelligence did not unequivocally remain significant after multiple comparisons correction, but exhibited a similar sexual dimorphism. These results suggest that the neural oscillatory correlates of intelligence in sleep are sexually dimorphic, and they are not restricted to either sleep spindles or NREM sleep
Influence of Body Position on Cortical Pain-Related Somatosensory Processing: An ERP Study
Background: Despite the consistent information available on the physiological changes induced by head down bed rest, a condition which simulates space microgravity, our knowledge on the possible perceptual-cortical alterations is still poor. The present study investigated the effects of 2-h head-down bed rest on subjective and cortical responses elicited by electrical, pain-related somatosensory stimulation. Methodology/Principal Findings: Twenty male subjects were randomly assigned to two groups, head-down bed rest (BR) or sitting control condition. Starting from individual electrical thresholds, Somatosensory Evoked Potentials were elicited by electrical stimuli administered randomly to the left wrist and divided into four conditions: control painless condition, electrical pain threshold, 30 % above pain threshold, 30 % below pain threshold. Subjective pain ratings collected during the EEG session showed significantly reduced pain perception in BR compared to Control group. Statistical analysis on four electrode clusters and sLORETA source analysis revealed, in sitting controls, a P1 component (40â50 ms) in the right somatosensory cortex, whereas it was bilateral and differently located in BR group. Controls â N1 (80â90 ms) had widespread right hemisphere activation, involving also anterior cingulate, whereas BR group showed primary somatosensory cortex activation. The P2 (190â220 ms) was larger in left-central locations of Controls compared with BR group. Conclusions/Significance: Head-down bed rest was associated to an overall decrease of pain sensitivity and an altered pai
Differences in pre-sleep activity and sleep location are associated with variability in daytime/nighttime sleep electrophysiology in the domestic dog
The domestic dog (Canis familiaris) is a promising animal model. Yet, the canine neuroscience literature is predominantly comprised of studies wherein (semi-)invasive methods and intensive training are used to study awake dog behavior. Given prior findings with humans and/or dogs, our goal was to assess, in 16 family dogs (1.5â7 years old; 10 males; 10 different breeds) the effects of pre-sleep activity and timing and location of sleep on sleep electrophysiology. All three factors had a main and/or interactive effect on sleep macrostructure. Following an active day, dogs slept more, were more likely to have an earlier drowsiness and NREM, and spent less time in drowsiness and more time in NREM and REM. Activity also had location- and time of day-specific effects. Time of day had main effects; at nighttime, dogs slept more and spent less time in drowsiness and awake after first drowsiness, and more time in NREM and in REM. Location had a main effect; when not at home, REM sleep following a first NREM was less likely. Findings are consistent with and extend prior human and dog data and have implications for the dog as an animal model and for informing future comparative research on sleep
Characteristics of the memory sources of dreams: A new version of the content-matching paradigm to take mundane and remote memories into account
Several studies have demonstrated that dream content is related to the waking life of the dreamer. However, the characteristics of the memory sources incorporated into dreams are still unclear. We designed a new protocol to investigate remote memories and memories of trivial experiences, both relatively unexplored in dream content until now. Upon awakening, for 7 days, participants identified the waking life elements (WLEs) related to their dream content and characterized them and their dream content on several scales to assess notably emotional valence. Thanks to this procedure, they could report WLEs from the whole lifespan, and mundane ones before they had been forgotten. Participants (N = 40, 14 males, age = 25.2 ± 7.6) reported 6.2 ± 2.0 dreams on average. For each participant, 83.4% ± 17.8 of the dream reports were related to one or more WLEs. Among all the WLEs incorporated into dreams dated by the participants (79.3 ± 19%), 40.2 ± 30% happened the day before the dream, 26.1 ± 26% the month before (the day before excluded), 15.8 ± 21% the year before the dream (the month before excluded), and 17.9 ± 24% happened more than one year before the dream. As could be expected from previous studies, the majority of the WLEs incorporated into dreams were scored as important by the dreamers. However, this was not true for incorporated WLEs dating from the day before the dream. In agreement with Freudâs observations, the majority of the day residues were scored as mundane. Finally, for both positive and negative WLEs incorporated into dreams, the dreamt version of the WLE was rated as emotionally less intense than the original WLE. This result, showing that dreams tend to attenuate the emotional tone of waking-life memories towards a more neutral one, argues in favor of the emotional regulation hypothesis of dreaming
- âŠ