765 research outputs found
Cluster Dynamics of Planetary Waves
The dynamics of nonlinear atmospheric planetary waves is determined by a
small number of independent wave clusters consisting of a few connected
resonant triads. We classified the different types of connections between
neighboring triads that determine the general dynamics of a cluster. Each
connection type corresponds to substantially different scenarios of energy flux
among the modes. The general approach can be applied directly to various
mesoscopic systems with 3-mode interactions, encountered in hydrodynamics,
astronomy, plasma physics, chemistry, medicine, etc.Comment: 6 pages, 3 figs, EPL, publishe
Transient conditions for biogenesis on low-mass exoplanets with escaping hydrogen atmospheres
Exoplanets with lower equilibrium temperatures than Earth and primordial
hydrogen atmospheres that evaporate after formation should pass through
transient periods where oceans can form on their surfaces, as liquid water can
form below a few thousand bar pressure and H2-H2 collision-induced absorption
provides significant greenhouse warming. The duration of the transient period
depends on the planet size, starting H2 inventory and star type, with the
longest periods typically occurring for planets around M-class stars. As
pre-biotic compounds readily form in the reducing chemistry of hydrogen-rich
atmospheres, conditions on these planets could be favourable to the emergence
of life. The ultimate fate of any emergent organisms under such conditions
would depend on their ability to adapt to (or modify) their gradually cooling
environment.Comment: 19 pages, 5 figures, accepted for publication in Icaru
Increased insolation threshold for runaway greenhouse processes on Earth like planets
Because the solar luminosity increases over geological timescales, Earth
climate is expected to warm, increasing water evaporation which, in turn,
enhances the atmospheric greenhouse effect. Above a certain critical
insolation, this destabilizing greenhouse feedback can "runaway" until all the
oceans are evaporated. Through increases in stratospheric humidity, warming may
also cause oceans to escape to space before the runaway greenhouse occurs. The
critical insolation thresholds for these processes, however, remain uncertain
because they have so far been evaluated with unidimensional models that cannot
account for the dynamical and cloud feedback effects that are key stabilizing
features of Earth's climate. Here we use a 3D global climate model to show that
the threshold for the runaway greenhouse is about 375 W/m, significantly
higher than previously thought. Our model is specifically developed to quantify
the climate response of Earth-like planets to increased insolation in hot and
extremely moist atmospheres. In contrast with previous studies, we find that
clouds have a destabilizing feedback on the long term warming. However,
subsident, unsaturated regions created by the Hadley circulation have a
stabilizing effect that is strong enough to defer the runaway greenhouse limit
to higher insolation than inferred from 1D models. Furthermore, because of
wavelength-dependent radiative effects, the stratosphere remains cold and dry
enough to hamper atmospheric water escape, even at large fluxes. This has
strong implications for Venus early water history and extends the size of the
habitable zone around other stars.Comment: Published in Nature. Online publication date: December 12, 2013.
Accepted version before journal editing and with Supplementary Informatio
Turbulent spectrum of the Earth's ozone field
The Total Ozone Mapping Spectrometer (TOMS) database is subjected to an
analysis in terms of the Karhunen-Loeve (KL) empirical eigenfunctions. The
concentration variance spectrum is transformed into a wavenumber spectrum, . In terms of wavenumber is shown to be in the
inverse cascade regime, in the enstrophy cascade regime with the
spectral {\it knee} at the wavenumber of barotropic instability.The spectrum is
related to known geophysical phenomena and shown to be consistent with physical
dimensional reasoning for the problem. The appropriate Reynolds number for the
phenomena is .Comment: RevTeX file, 4 pages, 4 postscript figures available upon request
from Richard Everson <[email protected]
Quantification de la variabilité biologique à l'aide de la modélisation : élaboration d'un guide de stratégie pour la surveillance biologique de l'exposition
Predictive use of the Maximum Entropy Production principle for Past and Present Climates
In this paper, we show how the MEP hypothesis may be used to build simple
climate models without representing explicitly the energy transport by the
atmosphere. The purpose is twofold. First, we assess the performance of the MEP
hypothesis by comparing a simple model with minimal input data to a complex,
state-of-the-art General Circulation Model. Next, we show how to improve the
realism of MEP climate models by including climate feedbacks, focusing on the
case of the water-vapour feedback. We also discuss the dependence of the
entropy production rate and predicted surface temperature on the resolution of
the model
Notions and subnotions in information structure
Three dimensions can be distinguished in a cross-linguistic account of information structure. First, there is the definition of the focus constituent, the part of the linguistic expression which is subject to some focus meaning. Second and third, there are the focus meanings and the array of structural devices that encode them. In a given language, the expression of focus is facilitated as well as constrained by the grammar within which the focus devices operate. The prevalence of focus ambiguity, the structural inability to make focus distinctions, will thus vary across languages, and within a language, across focus meanings
- …
