1,766 research outputs found

    Study of X-ray Radiation Damage in Silicon Sensors

    Full text link
    The European X-ray Free Electron Laser (XFEL) will deliver 30,000 fully coherent, high brilliance X-ray pulses per second each with a duration below 100 fs. This will allow the recording of diffraction patterns of single complex molecules and the study of ultra-fast processes. Silicon pixel sensors will be used to record the diffraction images. In 3 years of operation the sensors will be exposed to doses of up to 1 GGy of 12 keV X-rays. At this X-ray energy no bulk damage in silicon is expected. However fixed oxide charges in the insulating layer covering the silicon and interface traps at the Si-SiO2 interface will be introduced by the irradiation and build up over time. We have investigated the microscopic defects in test structures and the macroscopic electrical properties of segmented detectors as a function of the X-ray dose. From the test structures we determine the oxide charge density and the densities of interface traps as a function of dose. We find that both saturate (and even decrease) for doses between 10 and 100 MGy. For segmented sensors the defects introduced by the X-rays increase the full depletion voltage, the surface leakage current and the inter-pixel capacitance. We observe that an electron accumulation layer forms at the Si-SiO2 interface. Its width increases with dose and decreases with applied bias voltage. Using TCAD simulations with the dose dependent parameters obtained from the test structures, we are able to reproduce the observed results. This allows us to optimize the sensor design for the XFEL requirements

    Single-session anodal transcranial direct current stimulation to enhance sport-specific performance in athletes: A systematic review and meta-analysis

    Get PDF
    BackgroundTranscranial direct current stimulation (tDCS) has emerged as a promising and feasible method to improve motor performance in healthy and clinical populations. However, the potential of tDCS to enhance sport-specific motor performance in athletes remains elusive.ObjectiveWe aimed at analyzing the acute effects of a single anodal tDCS session on sport-specific motor performance changes in athletes compared to sham.MethodsA systematic review and meta-analysis was conducted in the electronic databases PubMed, Web of Science, and SPORTDiscus. The meta-analysis was performed using an inverse variance method and a random-effects model. Additionally, two subgroup analyses were conducted (1) depending on the stimulated brain areas (primary motor cortex (M1), temporal cortex (TC), prefrontal cortex (PFC), cerebellum (CB)), and (2) studies clustered in subgroups according to different sports performance domains (endurance, strength, visuomotor skill).ResultsA total number of 19 studies enrolling a sample size of 258 athletes were deemed eligible for inclusion. Across all included studies, a significant moderate standardized mean difference (SMD) favoring anodal tDCS to enhance sport-specific motor performance could be observed. Subgroup analysis depending on cortical target areas of tDCS indicated a significant moderate SMD in favor of anodal tDCS compared to sham for M1 stimulation.ConclusionA single anodal tDCS session can lead to performance enhancement in athletes in sport-specific motor tasks. Although no definitive conclusions can be drawn regarding the modes of action as a function of performance domain or stimulation site, these results imply intriguing possibilities concerning sports performance enhancement through anodal M1 stimulation

    Potential Application of the Modulated Scatterer Technique to Multilayered Material Evaluation and Health Monitoring

    Get PDF
    Modulated scatterer technique (MST) is based on illuminating a small antenna, usually a dipole, loaded with a PIN diode, with an electromagnetic wave. The scattered (or reflected) wave from the probe may then be used to determine dielectric properties of the material in which the probe is located or embedded. The PIN diode is turned on and off which not only changes the impedance of the probe, but also modulates (with the same rate) the reflection from the probe. A major challenge associated with MST is detecting and distinguishing the desired probe response in the ever-present reflections from surrounding structures and materials. This challenge can be overcome by incorporating a swept-frequency method into the measurements. A swept-frequency technique allows the use of the Fourier Transform method which results in separate detection of the reflection from the probe (similar to pulsed methods). Having the ability to discriminate the probe response renders the MST technique useful for multilayer structure applications as well. The probe can be placed in a given layer of a material, and the properties of that layer can be monitored (regardless of the presence of other layers). Additionally, the probe can be placed at an interface and changes in that interface (such as disbonding) can be detected. The ratio of the reflection from a probe, between the on and off states, has been shown to be a unique technique for evaluating properties of materials. This paper presents the basis and some results of applying swept-frequency MST for inspecting layered materials

    Performance of the EUDET-type beam telescopes

    Full text link
    Test beam measurements at the test beam facilities of DESY have been conducted to characterise the performance of the EUDET-type beam telescopes originally developed within the EUDET project. The beam telescopes are equipped with six sensor planes using MIMOSA26 monolithic active pixel devices. A programmable Trigger Logic Unit provides trigger logic and time stamp information on particle passage. Both data acquisition framework and offline reconstruction software packages are available. User devices are easily integrable into the data acquisition framework via predefined interfaces. The biased residual distribution is studied as a function of the beam energy, plane spacing and sensor threshold. Its standard deviation at the two centre pixel planes using all six planes for tracking in a 6\,GeV electron/positron-beam is measured to be (2.88\,\pm\,0.08)\,\upmu\meter.Iterative track fits using the formalism of General Broken Lines are performed to estimate the intrinsic resolution of the individual pixel planes. The mean intrinsic resolution over the six sensors used is found to be (3.24\,\pm\,0.09)\,\upmu\meter.With a 5\,GeV electron/positron beam, the track resolution halfway between the two inner pixel planes using an equidistant plane spacing of 20\,mm is estimated to (1.83\,\pm\,0.03)\,\upmu\meter assuming the measured intrinsic resolution. Towards lower beam energies the track resolution deteriorates due to increasing multiple scattering. Threshold studies show an optimal working point of the MIMOSA26 sensors at a sensor threshold of between five and six times their RMS noise. Measurements at different plane spacings are used to calibrate the amount of multiple scattering in the material traversed and allow for corrections to the predicted angular scattering for electron beams

    Effects of ON and OFF subthalamic nucleus-DBS on prefrontal cortex activation during a cognitive task: an fNIRS study

    Get PDF
    Subthalamic nucleus (STN) deep brain stimulation (DBS) therapy is an effective treatment for the appendicular motor symptoms of Parkinson’s disease (PD). The STN contains multiple segregated circuits subserving motor, cognitive and mood functions through distinct connectivity to cortical regions. Therefore, we examined prefrontal cortical (PFC) effects of “ON” and “OFF” STN-DBS on executive function (Go/NoGo) using functional near-infrared spectroscopy (fNIRS). Methods Out of 8 PD STN-DBS patients, we present here preliminary analysis of a male (62y) PD patient with bilateral STN-DBS (unipolar, 180Hz, 3.5V). The patient was tested after 12h withdrawal of dopamine medications in both an “OFF” and “ON” DBS session separated by 30min. The subject performed a computerised GoNoGo task with 3 alternating Go/NoGo blocks of 30s duration (20 trials/block) interspersed with 30s rest. Reaction time (RT) and accuracy (omission-Om and commission-Cm errors) results were the average of the 3 Go/NoGo blocks. During performance of the Go/NoGo blocks, changes in oxygenated (O2Hb) and deoxygenated (HHb) haemoglobin concentrations were measured by a fNIRS system (Oxymon MkIII, Artinis Medical Systems) covering the bilateral PFC regions. Results/Discussion Clinical motor performance (UPDRSIII) improved from OFF (31) to ON (20). RT during Go and NoGo was ∌40ms faster in OFF (460 and 364ms) than ON (516 and 407ms). Furthermore, the NoGo condition increased misses (Om) in ON (7%) than OFF (0%); while false alarms (Cm) were similarly increased in ON (27%) and OFF (30%). The Go and NoGo conditions increased bilateral PFC activation (i.e., increase in O2Hb and decrease in HHb). However, there was a general decrease in PFC activation in OFF relative to ON, and this was more obvious in Go than NoGo (see Fig. 1) Conclusion These preliminary results indicate that STN-DBS modulates neurovascular responses in the bilateral PFC that are associated with response inhibition

    Simulation of the Response of the Solid State Neutron Detector for the European Spallation Source

    Full text link
    The characteristics of the Solid-state Neutron Detector, under development for neutron-scattering measurements at the European Spallation Source, have been simulated with a Geant4-based computer code. The code models the interations of thermal neutrons and ionising radiation in the 6Li-doped scintillating glass of the detector, the production of scintillation light and the transport of optical, scintillation photons through the the scintillator, en route to the photo-cathode of the attached multi-anode photomultiplier. Factors which affect the optical-photon transport, such as surface finish, pixelation of the glass sheet, provision of a front reflector and optical coupling media are compared. Predictions of the detector response are compared with measurements made with neutron and gamma-ray sources, a collimated alpha source and finely collimated beams of 2.5 MeV protons and deuterons.Comment: Preprint 22 pages, 12 figures, published in NIM

    On stability of discretizations of the Helmholtz equation (extended version)

    Full text link
    We review the stability properties of several discretizations of the Helmholtz equation at large wavenumbers. For a model problem in a polygon, a complete kk-explicit stability (including kk-explicit stability of the continuous problem) and convergence theory for high order finite element methods is developed. In particular, quasi-optimality is shown for a fixed number of degrees of freedom per wavelength if the mesh size hh and the approximation order pp are selected such that kh/pkh/p is sufficiently small and p=O(log⁥k)p = O(\log k), and, additionally, appropriate mesh refinement is used near the vertices. We also review the stability properties of two classes of numerical schemes that use piecewise solutions of the homogeneous Helmholtz equation, namely, Least Squares methods and Discontinuous Galerkin (DG) methods. The latter includes the Ultra Weak Variational Formulation

    UK meteotsunamis: a revision and update on events and their frequency

    Get PDF
    A tsunami is a series of waves caused by the displacement of water. The displacement may result from ‘bottom‐up’ seabed movement, such as caused by earthquakes, landslides and volcanic eruptions or ‘top‐down’ movement, from pressure perturbations in the atmosphere. These ‘top‐down’ events are termed meteotsunamis. Meteotsunamis frequently occur in the Mediterranean, the Baltic Sea, the east coast and Great Lakes of North America, and Japan, so they are not exclusive to the United Kingdom. The most recent meteotsunami near the UK coast was in May 2017, when waves around 2m in elevation, generated by a storm passing over the UK, struck the coast of the Netherlands. Historical documents covering the past 150 years describe many meteotsunamis from United Kingdom (UK) coastal waters (Haslett et al ., 2009; Haslett and Bryant, 2009; Tappin et al ., 2013; Vilibić et al ., 2015; O'Brien et al ., 2018). Some of these events have resulted in fatalities, involving beach users who were struck by unexpected sea waves. Meteotsunamis commonly strike the coasts of the UK, damaging harbours, boats and very rarely, causing fatalities. In the UK, they were usually detected by analysis after the event, unless witnessed first‐hand. This post‐event analysis is particularly necessary in the UK because the data provided by the tide gauge system, operated by the Environment Agency, only records at 15‐min intervals, not in real time as in the rest of Europe. The periods of meteotsunamis are in the range of minutes to tens of minutes (Pattiaratchi and Wijeratne, 2015). A frequency of tens of minutes is similar to a typical frequency expected from a meteotsunami that would have an amplified response from harbour or bay resonance (Tappin et al ., 2013). Therefore, those occurring in UK waters are not often recorded with the present tide gauge settings and as a consequence, cannot be analysed effectively

    ‘Priming’ exercise and O2 uptake kinetics during treadmill running

    Get PDF
    We tested the hypothesis that priming exercise would speed kinetics during treadmill running. Eight subjects completed a square-wave protocol, involving two bouts of treadmill running at 70% of the difference between the running speeds at lactate threshold (LT) and max, separated by 6-min of walking at 4 km h−1, on two occasions. Oxygen uptake was measured breath-by-breath and subsequently modelled using non-linear regression techniques. Heart rate and blood lactate concentration were significantly elevated prior to the second exercise bout compared to the first. However, kinetics was not significantly different between the first and second exercise bouts (mean ± S.D., phase II time constant, Bout 1: 16 ± 3 s vs. Bout 2: 16 ± 4 s; slow component amplitude, Bout 1: 0.24 ± 0.10 L min−1vs. Bout 2: 0.20 ± 0.12 L min−1; mean response time, Bout 1: 34 ± 4 s vs. Bout 2: 34 ± 6 s; P > 0.05 for all comparisons). These results indicate that, contrary to previous findings with other exercise modalities, priming exercise does not alter kinetics during high-intensity treadmill running, at least in physically active young subjects. We speculate that the relatively fast kinetics and the relatively small slow component in the control (‘un-primed’) condition negated any enhancement of kinetics by priming exercise in this exercise modality
    • 

    corecore