29 research outputs found

    VERTICAL IMPACT FORCE AND LOADING RATE ON THE GYMNASTICS TABLE VAULT

    Get PDF
    The purpose of this study was to determine the effect of low and high intensity impact forces on the average loading rate during a forward handspring vault. Peak force, time to peak and impulse were used to characterize the impact vertical force during a vault performed by 12 female gymnasts. Reaction forces from right and left hands were measured at 500 Hz with two PASCO portable force platforms fixed to the vault table surface. Force data were split in two groups: Low intensity (LI: peak forces 0.7 BW). Significant differences (

    A classification of fitness components in elite alpine skiers: a cluster analysis

    Get PDF
    The current study is an exploratory, secondary data analysis of a selection of physiological and biomechanical fitness components used to assess elite alpine skiers. The present study will provide new knowledge that can be used to aid training prescription and talent identification. A hierarchical cluster analysis was used to identify groups of variables that are crucial for elite alpine skiers and differences based on sex and competition level. The key findings of the study are the patterns that emerged in the generated dendrograms. Physiological and biomechanical fitness components are differentiated in the dendrograms of male and female world-cup-level alpine skiers, but not in non-world-cup athletes. Components related to the aerobic and anaerobic capacity tightly cluster in male athletes at world cup and non-world-cup level, and female world cup athletes. Lower body explosive force production appears to be more critical in male world cup athletes than female world cup athletes. More research is needed into the importance of isometric strength in the lower body. Future research should use larger sample sizes and consider other alpine ski demographics

    M tuberculosis in the adjuvant modulates time of appearance of CNS-specific effector T cells in the spleen through a polymorphic site of TLR2

    Get PDF
    DC deliver information regulating trafficking of effector T cells along T-cell priming. However, the role of pathogen-derived motives in the regulation of movement of T cells has not been studied. We hereinafter report that amount of M tuberculosis in the adjuvant modulates relocation of PLP139-151 specific T cells. In the presence of a low dose of M tuberculosis in the adjuvant, T cells (detected by CDR3 BV-BJ spectratyping, the so-called "immunoscope") mostly reach the spleen by day 28 after immunization ("late relocation") in the SJL strain, whereas T cells reach the spleen by d 14 with a high dose of M tuberculosis ("early relocation"). The C57Bl/6 background confers a dominant "early relocation" phenotype to F1 (SJL 7C57Bl/6) mice, allowing early relocation of T cells in the presence of low dose M tuberculosis. A single non-synonymous polymorphism of TLR2 is responsible for "early/late" relocation phenotype. Egress of T lymphocytes is regulated by TLR2 expressed on T cells. Thus, pathogens engaging TLR2 on T cells regulate directly T-cell trafficking, and polymorphisms of TLR2 condition T-cell trafficking upon a limiting concentration of ligand

    Basal and ?-Adrenergic cardiomyocytes contractility dysfunction induced by dietary protein restriction is associated with downregulation of SERCA2a expression and disturbance of endoplasmic reticulum Ca2+ regulation in rats.

    Get PDF
    Background: The mechanisms responsible for the cardiac dysfunction associated with dietary protein restriction (PR) are poorly understood. Thus, this study was designed to evaluate the effects of PR on calcium kinetics, basal and ?-adrenergic contractility in murine ventricular cardiomyocytes. Methods: After breastfeeding male Fisher rats were distributed into a control group (CG, n = 20) and a protein-restricted group (PRG, n = 20), receiving isocaloric diets for 35 days containing 15% and 6% protein, respectively. Biometric and hemodynamic variables were measured. After euthanasia left ventricles (LV) were collected for histopathological evaluation, SERCA2a expression, cardiomyocytes contractility and Ca2+ sparks analysis. Results: PRG animals showed reduced general growth, increased heart rate and arterial pressure. These animals presented extracellular matrix expansion and disorganization, cardiomyocytes hypotrophy, reduced amplitudes of shortening and maximum velocity of contraction and relaxation at baseline and after ?-adrenergic stimulation. Reduced SERCA2a expression as well as higher frequency and lower amplitude of Ca2+ sparks were observed in PRG cardiomyocytes. Conclusion: The observations reveal that protein restriction induces marked myocardial morphofunctional damage. The pathological changes of cardiomyocyte mechanics suggest the potential involvement of the ?-adrenergic system, which is possibly associated with changes in SERCA2a expression and disturbances in Ca2+ intracellular kinetics

    Stretching the spines of gymnasts: a review

    Get PDF
    Gymnastics is noted for involving highly specialized strength, power, agility and flexibility. Flexibility is perhaps the single greatest discriminator of gymnastics from other sports. The extreme ranges of motion achieved by gymnasts require long periods of training, often occupying more than a decade. Gymnasts also start training at an early age (particularly female gymnasts), and the effect of gymnastics training on these young athletes is poorly understood. One of the concerns of many gymnastics professionals is the training of the spine in hyperextension-the ubiquitous 'arch' seen in many gymnastics positions and movements. Training in spine hyperextension usually begins in early childhood through performance of a skill known as a back-bend. Does practising a back-bend and other hyperextension exercises harm young gymnasts? Current information on spine stretching among gymnasts indicates that, within reason, spine stretching does not appear to be an unusual threat to gymnasts' health. However, the paucity of information demands that further study be undertaken

    Poly(ADPR)polymerase-1 signalling of the DNA damage induced by DNA topoisomerase I poison in D54p53wt and U251p53mut glioblastoma cell lines.

    No full text
    Glioblastomas are widely characterised by the mutation of the p53 gene and p53 disruption sensitizes glioblastoma cells to DNA topoisomerase I (TOPO I) inhibitor-mediated apoptosis. We investigated the effects of combined treatments with the DNA topoisomerase I inhibitor Topotecan and the poly(ADPR)polymerase-1 inhibitor NU1025 in D54p53wt and U251p53mut glioblastoma cell lines. Analysis of cell growth and cell cycle kinetics showed a synergistic anti-proliferative effect of 10 nM TPT and 10 μM NU1025 and a G2/M block of the cell cycle. We also evaluated, the influence of TPT+/−NU1025 treatment on PARP-1 and p53 activity. We got evidences of a TPT-dependent increase of PARP-1 auto-modification level in both the cells. Moreover, in the D54p53wt cells we found that in co-treatments NU1025 incremented the TPT-dependent stimulation of p53 transcriptional activity and increased the p21 nuclear amount. Conversely, in U251p53mut cells we found that NU1025 incremented the TPT-dependent apoptosis characterised by PARP-1 proteolysis. Our findings suggest that the modulation of PARP-1 can be considered a strategy in the potentiation of the chemotherapeutic action of TOPO I poisons in glioblastoma cells apart from their p53 status

    Poly(ADPR)polymerase-1 signalling of the DNA damage induced by DNA Topoisomerase I poison in D54 p53wt and U251p53mut glioblastoma cell lines

    No full text
    corecore