104 research outputs found

    Ceramic on ceramic bearing fractures in total hip arthroplasty : an analysis of data from the national joint registry

    Get PDF
    Aims: Ceramic-on-ceramic (CoC) bearings in total hip arthroplasty (THA) are commonly used but concerns exist regarding ceramic fracture. This study aims to report the risk of revision for fracture of modern CoC bearings and identify factors that might influence this risk, using data from the National Joint Registry (NJR). Patients and Methods: We analysed data on 111,681 primary CoC THA’s and 182 linked revisions for bearing fracture recorded in NJR. We used implant codes to identify ceramic bearing composition and generated Kaplan-Meier estimates for implant survivorship. Logistic regression analyses were performed for implant size and patient specific variables to determine any associated risks for revision. Results: 99.8% of bearings were CeramTec Biolox® products. Revisions for fracture were linked to 7 of 79,442 (0.009%) Biolox® Delta heads, 38 of 31,982 (0.119%) Biolox® Forte heads, 101 of 80,170 (0.126%) Biolox® Delta liners and 35 of 31,258 (0.112%) Biolox® Forte liners. Regression analysis of implant size revealed smaller heads had significantly higher odds of fracture (χ2=68.0, p<0.0001). The highest fracture risk were observed in the 28mm Biolox® Forte subgroup (0.382%). There were no fractures in the 40mm head group for either ceramic type. Liner thickness was not predictive of fracture (p=0.67). BMI was independently associated with revision for both head fractures (OR 1.09 per unit increase, p=0.031) and liner fractures (OR 1.06 per unit increase, p=0.006). Conclusions: We report the largest study of CoC bearing fractures to date. The risk of revision for CoC bearing fracture is very low, however previous studies have underestimated this risk. There is good evidence that the latest generation of ceramic has greatly reduced the odds of head fracture but not of liner fracture. Small head size and high patient BMI are associated with an increased risk of ceramic bearing fracture

    Level structure of the Tz=-1 nucleus Ar 34 and its relevance for nucleosynthesis in ONe novae

    Get PDF
    The Mg24+C12 fusion reaction was used to perform a detailed γ-ray spectroscopy study of the astrophysically important nucleus Ar34. In particular, an experimental setup, coupling the advanced γ-ray tracking array GRETINA with the well-established Argonne fragment mass analyzer (FMA), was employed to obtain excitation energies and spin-parity assignments for excited states in Ar34, both above and below the proton separation energy. For the first time, an angular distribution analysis of in-beam γ rays from fusion-evaporation reactions, using a tracking array, has been performed and Coulomb energy differences of analog states in the T=1, A=34 mirror system, explored from 0 to 6 MeV. Furthermore, we present a comprehensive discussion of the astrophysical Cl33(p,γ) stellar reaction rate, together with implications for the identification of nova presolar grains from sulfur isotopic abundances

    Search for Nova Presolar Grains: γ -Ray Spectroscopy of Ar 34 and its Relevance for the Astrophysical Cl 33 (p,γ) Reaction

    Get PDF
    The discovery of presolar grains in primitive meteorites has initiated a new era of research in the study of stellar nucleosynthesis. However, the accurate classification of presolar grains as being of specific stellar origins is particularly challenging. Recently, it has been suggested that sulfur isotopic abundances may hold the key to definitively identifying presolar grains with being of nova origins and, in this regard, the astrophysical Cl33(p,γ)Ar34 reaction is expected to play a decisive role. As such, we have performed a detailed γ-ray spectroscopy study of Ar34. Excitation energies have been measured with high precision and spin-parity assignments for resonant states, located above the proton threshold in Ar34, have been made for the first time. Uncertainties in the Cl33(p,γ) reaction have been dramatically reduced and the results indicate that a newly identified ℓ =0 resonance at Er=396.9(13) keV dominates the entire rate for T=0.25-0.40 GK. Furthermore, nova hydrodynamic simulations based on the present work indicate an ejected S32/S33 abundance ratio distinctive from type-II supernovae and potentially compatible with recent measurements of a presolar grain

    Fast-timing measurements in <sup>96</sup>Pd:improved accuracy for the lifetime of the 4<sup>+</sup><sub>1</sub> state

    Get PDF
    Direct lifetime measurements via γ–γ coincidences using the FATIMA fast-timing LaBr3(Ce) array were performed for the excited states below previously reported isomers. In the N = 50 semi-magic 96Pd nucleus, lifetimes below the I π = 8+ seniority isomer were addressed as a benchmark for further analysis. The results for the I π = 2+ and 4 + states confirm the published values. Increased accuracy for the lifetime value was achieved for the 4 + state.peerReviewe

    Mechanically assisted electrochemical degradation of alumina-TiC composites

    Get PDF
    Alumina-TiC composite material is a tough ceramic composite with excellent hardness, wear resistance and oxidation resistance in dry and high-temperature conditions. In aqueous conditions, however, it is likely to be electrochemically active facilitating charge transfer processes due to the conductive nature of TiC. For application as an orthopedic biomaterial, it is crucial to assess the electrochemical behavior of this composite, especially under a combined mechanical and electrochemical environment. In this study, we examined the mechanically assisted electrochemical performance of alumina-TiC composite in an aqueous environment. The spontaneous electrochemical response to brushing abrasion was measured. Changes in the magnitude of electrochemical current with abrasion test conditions and possible causal relationship to the alteration in surface morphology were examined. Results showed that the alumina matrix underwent abrasive wear with evidence of microploughing and grain boundary damage. Chemical analysis revealed TiO2 formation in the abraded region, indicating oxidation of the conductive TiC domain. Furthermore, wear debris from alumina abrasion appeared to affect reaction kinetics at the composite-electrolyte interface. From this work, we established that the composite undergoes abrasion assisted electrochemical degradation even in gentle abrasive conditions and the severity of degradation is related to temperature and conditions of test environment

    Broken seniority symmetry in the semimagic proton mid-shell nucleus <sup>95</sup>Rh

    Get PDF
    Lifetime measurements of low-lying excited states in the semimagic ( N = 50 ) nucleus 95Rh have been performed by means of the fast-timing technique. The experiment was carried out using γ -ray detector arrays consisting of LaBr3(Ce) scintillators and germanium detectors integrated into the DESPEC experimental setup commissioned for the Facility for Antiproton and Ion Research (FAIR) Phase-0, Darmstadt, Germany. The excited states in 95Rh were populated primarily via the β decays of 95Pd nuclei, produced in the projectile fragmentation of a 850 MeV/nucleon 124Xe beam impinging on a 4 g / cm2 9Be target. The deduced electromagnetic E2 transition strengths for the γ -ray cascade within the multiplet structure depopulating from the isomeric Iπ = 21 / 2+ state are found to exhibit strong deviations from predictions of standard shell model calculations which feature approximately conserved seniority symmetry. In particular, the observation of a strongly suppressed E2 strength for the 13 / 2+ → 9 / 2+ ground state transition cannot be explained by calculations employing standard interactions. This remarkable result may require revision of the nucleon-nucleon interactions employed in state-of-the-art theoretical model calculations, and might also point to the need for including three-body forces in the Hamiltonian

    Decay studies in the A ∼ 225 Po-Fr region from the DESPEC campaign at GSI in 2021

    Get PDF

    Primary biliary cirrhosis

    Get PDF
    Primary biliary cirrhosis (PBC) is an immune-mediated chronic cholestatic liver disease with a slowly progressive course. Without treatment, most patients eventually develop fibrosis and cirrhosis of the liver and may need liver transplantation in the late stage of disease. PBC primarily affects women (female preponderance 9–10:1) with a prevalence of up to 1 in 1,000 women over 40 years of age. Common symptoms of the disease are fatigue and pruritus, but most patients are asymptomatic at first presentation. The diagnosis is based on sustained elevation of serum markers of cholestasis, i.e., alkaline phosphatase and gamma-glutamyl transferase, and the presence of serum antimitochondrial antibodies directed against the E2 subunit of the pyruvate dehydrogenase complex. Histologically, PBC is characterized by florid bile duct lesions with damage to biliary epithelial cells, an often dense portal inflammatory infiltrate and progressive loss of small intrahepatic bile ducts. Although the insight into pathogenetic aspects of PBC has grown enormously during the recent decade and numerous genetic, environmental, and infectious factors have been disclosed which may contribute to the development of PBC, the precise pathogenesis remains enigmatic. Ursodeoxycholic acid (UDCA) is currently the only FDA-approved medical treatment for PBC. When administered at adequate doses of 13–15 mg/kg/day, up to two out of three patients with PBC may have a normal life expectancy without additional therapeutic measures. The mode of action of UDCA is still under discussion, but stimulation of impaired hepatocellular and cholangiocellular secretion, detoxification of bile, and antiapoptotic effects may represent key mechanisms. One out of three patients does not adequately respond to UDCA therapy and may need additional medical therapy and/or liver transplantation. This review summarizes current knowledge on the clinical, diagnostic, pathogenetic, and therapeutic aspects of PBC

    Basic Science Considerations in Primary Total Hip Replacement Arthroplasty

    Get PDF
    Total Hip Replacement is one of the most common operations performed in the developed world today. An increasingly ageing population means that the numbers of people undergoing this operation is set to rise. There are a numerous number of prosthesis on the market and it is often difficult to choose between them. It is therefore necessary to have a good understanding of the basic scientific principles in Total Hip Replacement and the evidence base underpinning them. This paper reviews the relevant anatomical and biomechanical principles in THA. It goes on to elaborate on the structural properties of materials used in modern implants and looks at the evidence base for different types of fixation including cemented and uncemented components. Modern bearing surfaces are discussed in addition to the scientific basis of various surface engineering modifications in THA prostheses. The basic science considerations in component alignment and abductor tension are also discussed. A brief discussion on modular and custom designs of THR is also included. This article reviews basic science concepts and the rationale underpinning the use of the femoral and acetabular component in total hip replacement

    A High-Resolution Study of the 110Tc → 110Ru → 110Rh → 110Pd Decay Chain with the GRETINA Array

    Get PDF
    Spectroscopic data, such as precise γ-ray branching and E2/M1 multipole-mixing ratios, provide vital constraints when performing multi-dimensional Coulomb-excitation analyses. Consequently, as part of our new Coulomb-excitation campaign aimed at investigating the role of exotic non-axial (triaxial) deformations in the unstable refractory Ru-Mo isotopes, additional beta-decay data was obtained. These measurements make use of ANL's CARIBU facility, which provides intense beams of radioactive refractory isotopes along with the excellent efficiency and angular resolution of the GRETINA γ-ray tracking array. In this article, we report on the analysis of the A = 110 decay chain, focussing on the identification of previously unreported states in 110Ru following the decay of 110Tc
    • …
    corecore