6,354 research outputs found
On wild extensions of a p-adic field
In this paper we consider the problem of classifying the isomorphism classes
of extensions of degree pk of a p-adic field, restricting to the case of
extensions without intermediate fields. We establish a correspondence between
the isomorphism classes of these extensions and some Kummer extensions of a
suitable field F containing K. We then describe such classes in terms of the
representations of Gal(F/K). Finally, for k = 2 and for each possible Galois
group G, we count the number of isomorphism classes of the extensions whose
normal closure has a Galois group isomorphic to G. As a byproduct, we get the
total number of isomorphism classes
Mechanical properties of tungsten alloys with Y2O3 and titanium additions
In this research the mechanical behaviour of pure tungsten (W) and its alloys (2 wt.% Ti–0.47 wt.% Y2O3 and 4 wt.% Ti–0.5 wt.% Y2O3) is compared. These tungsten alloys, have been obtained by powder metallurgy. The yield strength, fracture toughness and elastic modulus have been studied in the temperature interval of 25 °C to 1000 °C. The results have shown that the addition of Ti substantially improves the bending strength and toughness of W, but it also dramatically increases the DBTT. On the other hand, the addition of 0.5% Y2O3, is enough to improve noticeably the oxidation behaviour at the higher temperatures. The grain size, fractography and microstructure are studied in these materials. Titanium is a good grain growth inhibitor and effective precursor of liquid phase in HIP. The simultaneous presence of Y2O3 and Ti permits to obtain materials with low pores presenc
Revealing the dynamics of Class 0 protostellar discs with ALMA
We present synthetic ALMA observations of Keplerian, protostellar discs in
the Class 0 stage studying the emission of molecular tracers like CO,
CO, HCO, HCO, NH, and HCO. We model the
emission of discs around low- and intermediate-mass protostars. We show that
under optimal observing conditions ALMA is able to detect the discs already in
the earliest stage of protostellar evolution, although the emission is often
concentrated to the innermost 50 AU. Therefore, a resolution of a few 0.1"
might be too low to detect Keplerian discs around Class 0 objects. We also
demonstrate that under optimal conditions for edge-on discs Keplerian rotation
signatures are recognisable, from which protostellar masses can be inferred.
For this we here introduce a new approach, which allows us to determine
protostellar masses with higher fidelity than before. Furthermore, we show that
it is possible to reveal Keplerian rotation even for strongly inclined discs
and that ALMA should be able to detect possible signs of fragmentation in
face-on discs. In order to give some guidance for future ALMA observations, we
investigate the influence of varying observing conditions and source distances.
We show that it is possible to probe Keplerian rotation in inclined discs with
an observing time of 2 h and a resolution of 0.1", even in the case of moderate
weather conditions. Furthermore, we demonstrate that under optimal conditions,
Keplerian discs around intermediate-mass protostars should be detectable up to
kpc-distances.Comment: 17 pages, 17 figures, accepted for publication by MNRA
A study on subarcsecond scales of the ammonia and continuum emission toward the G16.59-0.05 high-mass star-forming region
We wish to investigate the structure, velocity field, and stellar content of
the G16.59-0.05 high-mass star-forming region, where previous studies have
established the presence of two almost perpendicular (NE-SW and SE-NW), massive
outflows, and a rotating disk traced by methanol maser emission. We performed
Very Large Array observations of the radio continuum and ammonia line emission,
complemented by COMICS/Subaru and Hi-GAL/Herschel images in the mid- and
far-infrared (IR). Our centimeter continuum maps reveal a collimated radio jet
that is oriented E-W and centered on the methanol maser disk, placed at the SE
border of a compact molecular core. The spectral index of the jet is negative,
indicating non-thermal emission over most of the jet, except the peak close to
the maser disk, where thermal free-free emission is observed. We find that the
ammonia emission presents a bipolar structure consistent (on a smaller scale)
in direction and velocity with that of the NE-SW bipolar outflow detected in
previous CO observations. After analyzing our previous N2H+(1-0) observations
again, we conclude that two scenarios are possible. In one case both the radio
jet and the ammonia emission would trace the root of the large-scale CO bipolar
outflow. The different orientation of the jet and the ammonia flow could be
explained by precession and/or a non-isotropic density distribution around the
star. In the other case, the N2H+(1-0) and ammonia bipolarity is interpreted as
two overlapping clumps moving with different velocities along the line of
sight. The ammonia gas also seems to undergo rotation consistent with the maser
disk. Our IR images complemented by archival data allow us to derive a
bolometric luminosity of about 10^4 L_sun and to conclude that most of the
luminosity is due to the young stellar object associated with the maser disk.Comment: 11 pages, 12 figures, published in Astronomy and Astrophysic
Chemical Segregation in Hot Cores With Disk Candidates: An investigation with ALMA
In the study of high-mass star formation, hot cores are empirically defined
stages where chemically rich emission is detected toward a massive YSO. It is
unknown whether the physical origin of this emission is a disk, inner envelope,
or outflow cavity wall and whether the hot core stage is common to all massive
stars. We investigate the chemical make up of several hot molecular cores to
determine physical and chemical structure. We use high spectral and spatial
resolution Cycle 0 ALMA observations to determine how this stage fits into the
formation sequence of a high mass star. We observed the G35.20-0.74N and
G35.03+0.35 hot cores at 350 GHz. We analyzed spectra and maps from four
continuum peaks (A, B1, B2 and B3) in G35.20, separated by 1000-2000 AU, and
one continuum peak in G35.03. We made all possible line identifications across
8 GHz of spectral windows of molecular emission lines and determined column
densities and temperatures for as many as 35 species assuming local
thermodynamic equilibrium. In comparing the spectra of the four peaks, we find
each has a distinct chemical composition expressed in over 400 different
transitions. In G35.20, B1 and B2 contain oxygen- and sulfur-bearing organic
and inorganic species but few nitrogen-bearing species whereas A and B3 are
strong sources of O, S, and N-bearing species (especially those with the
CN-bond). CHDCN is clearly detected in A and B3 with D/H ratios of 8 and
13, respectively, but is much weaker at B1 and undetected at B2. No
deuterated species are detected in G35.03, but similar molecular abundances to
G35.20 were found in other species. We also find co-spatial emission of HNCO
and NHCHO in both sources indicating a strong chemical link between the two
species. The chemical segregation between N-bearing organic species and others
in G35.20 suggests the presence of multiple protostars, surrounded by a disk or
torus.Comment: 14 pages with 13 figures main text, 54 pages appendi
Physical properties of high-mass clumps in different stages of evolution
(Abridged) Aims. To investigate the first stages of the process of high-mass
star formation, we selected a sample of massive clumps previously observed with
the SEST at 1.2 mm and with the ATNF ATCA at 1.3 cm. We want to characterize
the physical conditions in such sources, and test whether their properties
depend on the evolutionary stage of the clump.
Methods. With ATCA we observed the selected sources in the NH3(1,1) and (2,2)
transitions and in the 22 GHz H2O maser line. Ammonia lines are a good
temperature probe that allow us to accurately determine the mass and the
column-, volume-, and surface densities of the clumps. We also collected all
data available to construct the spectral energy distribution of the individual
clumps and to determine if star formation is already occurring, through
observations of its most common signposts, thus putting constraints on the
evolutionary stage of the source. We fitted the spectral energy distribution
between 1.2 mm and 70 microns with a modified black body to derive the dust
temperature and independently determine the mass.
Results. The clumps are cold (T~10-30 K), massive (M~10^2-10^3 Mo), and dense
(n(H2)>~10^5 cm^-3) and they have high column densities (N(H2)~10^23 cm^-2).
All clumps appear to be potentially able to form high-mass stars. The most
massive clumps appear to be gravitationally unstable, if the only sources of
support against collapse are turbulence and thermal pressure, which possibly
indicates that the magnetic field is important in stabilizing them.
Conclusions. After investigating how the average properties depend on the
evolutionary phase of the source, we find that the temperature and central
density progressively increase with time. Sources likely hosting a ZAMS star
show a steeper radial dependence of the volume density and tend to be more
compact than starless clumps.Comment: Published in A&A, Vol. 556, A1
Different evolutionary stages in massive star formation. Centimeter continuum and H2O maser emission with ATCA
We present ATCA observations of the H2O maser line and radio continuum at
18.0GHz and 22.8GHz, toward a sample of 192 massive star forming regions
containing several clumps already imaged at 1.2mm. The main aim of this study
is to investigate the water maser and centimeter continuum emission (likely
tracing thermal free-free emission) in sources at different evolutionary
stages, using the evolutionary classifications proposed by Palla et al (1991)
and Molinari et al (2008). We used the recently comissioned CABB backend at
ATCA obtaining images with 20arcsec resolution in the 1.3cm continuum and H2O
maser emission, in all targets. For the evolutionary analysis of the sources we
used the millimeter continuum emission from Beltran et al (2006) and the
infrared emission from the MSX Point Source Catalogue. We detect centimeter
continuum emission in 88% of the observed fields with a typical rms noise level
of 0.45mJy/beam. Most of the fields show a single radio continuum source, while
in 20% of them we identify multiple components. A total of 214 centimeter
continuum sources have been identified, likely tracing optically thin HII
regions, with physical parameters typical of both extended and compact HII
regions. Water maser emission was detected in 41% of the regions, resulting in
a total of 85 distinct components. The low angular (20arcsec) and spectral
(14km/s) resolutions do not allow a proper analysis of the water maser
emission, but suffice to investigate its association with the continuum
sources. We have also studied the detection rate of HII regions in the two
types of IRAS sources defined by Palla et (1991) on the basis of the IRAS
colours: High and Low. No significant differences are found, with large
detection rates (>90%) for both High and Low sources. We classify the
millimeter and infrared sources in our fields in three evolutionary stages
following the scheme presented by ...Comment: 102 pages, 19 figures, 10 tables, accepted for publication in
Astronomy & Astrophysic
Evolution and excitation conditions of outflows in high-mass star-forming regions
Theoretical models suggest that massive stars form via disk-mediated
accretion, with bipolar outflows playing a fundamental role. A recent study
toward massive molecular outflows has revealed a decrease of the SiO line
intensity as the object evolves. The present study aims at characterizing the
variation of the molecular outflow properties with time, and at studying the
SiO excitation conditions in outflows associated with massive YSOs. We used the
IRAM30m telescope to map 14 massive star-forming regions in the SiO(2-1),
SiO(5-4) and HCO+(1-0) outflow lines, and in several dense gas and hot core
tracers. Hi-GAL data was used to improve the spectral energy distributions and
the L/M ratio, which is believed to be a good indicator of the evolutionary
stage of the YSO. We detect SiO and HCO+ outflow emission in all the sources,
and bipolar structures in six of them. The outflow parameters are similar to
those found toward other massive YSOs. We find an increase of the HCO+ outflow
energetics as the object evolve, and a decrease of the SiO abundance with time,
from 10^(-8) to 10^(-9). The SiO(5-4) to (2-1) line ratio is found to be low at
the ambient gas velocity, and increases as we move to high velocities,
indicating that the excitation conditions of the SiO change with the velocity
of the gas (with larger densities and/or temperatures for the high-velocity gas
component). The properties of the SiO and HCO+ outflow emission suggest a
scenario in which SiO is largely enhanced in the first evolutionary stages,
probably due to strong shocks produced by the protostellar jet. As the object
evolves, the power of the jet would decrease and so does the SiO abundance.
During this process, however, the material surrounding the protostar would have
been been swept up by the jet, and the outflow activity, traced by entrained
molecular material (HCO+), would increase with time.Comment: 31 pages, 10 figures and 5 tables (plus 2 figures and 3 tables in the
appendix). Accepted for publication in A&A. [Abstract modified to fit the
arXiv requirements.
Candida albicans pathogenicity mechanisms
Peer reviewedPublisher PD
- …