Theoretical models suggest that massive stars form via disk-mediated
accretion, with bipolar outflows playing a fundamental role. A recent study
toward massive molecular outflows has revealed a decrease of the SiO line
intensity as the object evolves. The present study aims at characterizing the
variation of the molecular outflow properties with time, and at studying the
SiO excitation conditions in outflows associated with massive YSOs. We used the
IRAM30m telescope to map 14 massive star-forming regions in the SiO(2-1),
SiO(5-4) and HCO+(1-0) outflow lines, and in several dense gas and hot core
tracers. Hi-GAL data was used to improve the spectral energy distributions and
the L/M ratio, which is believed to be a good indicator of the evolutionary
stage of the YSO. We detect SiO and HCO+ outflow emission in all the sources,
and bipolar structures in six of them. The outflow parameters are similar to
those found toward other massive YSOs. We find an increase of the HCO+ outflow
energetics as the object evolve, and a decrease of the SiO abundance with time,
from 10^(-8) to 10^(-9). The SiO(5-4) to (2-1) line ratio is found to be low at
the ambient gas velocity, and increases as we move to high velocities,
indicating that the excitation conditions of the SiO change with the velocity
of the gas (with larger densities and/or temperatures for the high-velocity gas
component). The properties of the SiO and HCO+ outflow emission suggest a
scenario in which SiO is largely enhanced in the first evolutionary stages,
probably due to strong shocks produced by the protostellar jet. As the object
evolves, the power of the jet would decrease and so does the SiO abundance.
During this process, however, the material surrounding the protostar would have
been been swept up by the jet, and the outflow activity, traced by entrained
molecular material (HCO+), would increase with time.Comment: 31 pages, 10 figures and 5 tables (plus 2 figures and 3 tables in the
appendix). Accepted for publication in A&A. [Abstract modified to fit the
arXiv requirements.