652 research outputs found

    Renyi Entropy and Geometry

    Full text link
    Entanglement entropy in even dimensional conformal field theories (CFTs) contains well-known universal terms arising from the conformal anomaly. Renyi entropies are natural generalizations of the entanglement entropy that are much less understood. Above two spacetime dimensions, the universal terms in the Renyi entropies are unknown for general entangling geometries. We conjecture a new structure in the dependence of the four-dimensional Renyi entropies on the intrinsic and extrinsic geometry of the entangling surface. We provide evidence for this conjecture by direct numerical computations in the free scalar and fermion field theories. The computation involves relating the four-dimensional free massless Renyi entropies across cylindrical entangling surfaces to corresponding three-dimensional massive Renyi entropies across circular entangling surfaces. Our numerical technique also allows us to directly probe other interesting aspects of three-dimensional Renyi entropy, including the massless renormalized Renyi entropy and calculable contributions to the perimeter law.Comment: 16 pages, 3 figures; v2 refs added, minor improvement

    Lincoln at Gettysburg

    Get PDF
    This is an envelope enclosing four photograph reproductions. Produced for Eastern National Park & Monument Association. It’s front features a photograph image of President Abraham Lincoln. Its verso contains information about each photograph.https://scholarsjunction.msstate.edu/fvw-artifacts/5776/thumbnail.jp

    Severity scoring of manganese health effects for categorical regression

    Get PDF
    Characterizing the U-shaped exposure response relationship for manganese (Mn) is necessary for estimating the risk of adverse health from Mn toxicity due to excess or deficiency. Categorical regression has emerged as a powerful tool for exposure-response analysis because of its ability to synthesize relevant information across multiple studies and species into a single integrated analysis of all relevant data. This paper documents the development of a database on Mn toxicity designed to support the application of categorical regression techniques. Specifically, we describe (i) the conduct of a systematic search of the literature on Mn toxicity to gather data appropriate for dose-response assessment; (ii) the establishment of inclusion/exclusion criteria for data to be included in the categorical regression modeling database; (iii) the development of a categorical severity scoring matrix for Mn health effects to permit the inclusion of diverse health outcomes in a single categorical regression analysis using the severity score as the outcome variable; and (iv) the convening of an international expert panel to both review the severity scoring matrix and assign severity scores to health outcomes observed in studies (including case reports, epidemiological investigations, and in vivo experimental studies) selected for inclusion in the categorical regression database. Exposure information including route, concentration, duration, health endpoint(s), and characteristics of the exposed population was abstracted from included studies and stored in a computerized manganese database (MnDB), providing a comprehensive repository of exposure-response information with the ability to support categorical regression modeling of oral exposure data

    Should Aggressive Surgical Local Control Be Attempted in All Patients with Metastatic or Pelvic Ewing's Sarcoma?

    Get PDF
    In previous reports, patients with Ewing's sarcoma received radiation therapy (XRT) for definitive local control because metastatic disease and pelvic location were thought to preclude aggressive local treatment. We sought to determine if single-site metastatic disease should be treated differently from multicentric-metastatic disease. We also wanted to reinvestigate the impact of XRT, pelvic location, and local recurrence on outcomes. Our results demonstrated a significant difference in overall survival (OS) between patients with either localized disease or a single-metastatic site and patients with multicentric-metastatic disease (P = 0.004). Local control was also found to be an independent predictor of outcomes as demonstrated by a significant difference in OS between those with and without local recurrence (P = 0.001). Axial and pelvic location did not predict a decreased OS. Based on these results, we concluded that pelvic location and the diagnosis of metastatic disease at diagnosis should not preclude aggressive local control, except in cases of multicentric-metastatic disease

    Massively parallel landscape-evolution modelling using general purpose graphical processing units

    Get PDF
    As our expectations of what computer systems can do and our ability to capture data improves, the desire to perform ever more computationally intensive tasks increases. Often these tasks, comprising vast numbers of repeated computations, are highly interdependent on each other – a closely coupled problem. The process of Landscape-Evolution Modelling is an example of such a problem. In order to produce realistic models it is necessary to process landscapes containing millions of data points over time periods extending up to millions of years. This leads to non-tractable execution times, often in the order of years. Researchers therefore seek multiple orders of magnitude reduction in the execution time of these models. The massively parallel programming environment offered through General Purpose Graphical Processing Units offers the potential for multiple orders of magnitude speedup in code execution times. In this paper we demonstrate how the time dominant parts of a Landscape-Evolution Model can be recoded for a massively parallel architecture providing two orders of magnitude reduction in execution time

    Integral equations for simple fluids in a general reference functional approach

    Full text link
    The integral equations for the correlation functions of an inhomogeneous fluid mixture are derived using a functional Taylor expansion of the free energy around an inhomogeneous equilibrium distribution. The system of equations is closed by the introduction of a reference functional for the correlations beyond second order in the density difference from the equilibrium distribution. Explicit expressions are obtained for energies required to insert particles of the fluid mixture into the inhomogeneous system. The approach is illustrated by the determination of the equation of state of a simple, truncated Lennard--Jones fluid and the analysis of the behavior of this fluid near a hard wall. The wall--fluid integral equation exhibits complete drying and the corresponding coexisting densities are in good agreement with those obtained from the standard (Maxwell) construction applied to the bulk fluid. Self--consistency of the approach is examined by analyzing the virial/compressibility routes to the equation of state and the Gibbs--Duhem relation for the bulk fluid, and the contact density sum rule and the Gibbs adsorption equation for the hard wall problem. For the bulk fluid, we find good self--consistency for stable states outside the critical region. For the hard wall problem, the Gibbs adsorption equation is fulfilled very well near phase coexistence where the adsorption is large.For the contact density sum rule, we find some deviationsnear coexistence due to a slight disagreement between the coexisting density for the gas phase obtained from the Maxwell construction and from complete drying at the hard wall.Comment: 29 page
    • 

    corecore