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Abbreviations 

RBD, Ral binding domain; IPTG, isopropyl--D-1-thiogalactopyranoside; GST, glutathione-S-

transferase; GTP, guanosine-5'-triphosphate; GDP, guanosine-5'-diphosphate; DTT, dithiothreitol; 

SPA, scintillation proximity assay. 
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Abstract   

 

RalA and RalB are members of the Ras family of small G proteins and are activated downstream 

of Ras via RalGEFs. The RalGEF-Ral axis represents one of the major effector pathways 

controlled by Ras and as such is an important pharmacological target. RalA and RalB are 

approximately 80% identical at the amino acid level; despite this they have distinct roles both in 

normal cells and in the disease state. We have used our structure of RalB-RLIP76 to guide an 

analysis of Ral-effector interaction interfaces, creating panels of mutant proteins to probe the 

energetics of these interactions. The data provide a physical mechanism that underpins the effector 

selective mutations commonly employed to dissect Ral G protein function. Comparing the 

energetic landscape of the RalB-RLIP76 and RalB-Sec5 complexes reveals mutations in RalB that 

differentially bind the two effector proteins. A panel of RLIP76 mutants was used to probe the 

interaction between RLIP76 and RalA/B. Despite 100% sequence identity in the RalA/B contact 

residues with RLIP76, differences still exist in the energetic profiles of the two complexes. 

Therefore we have revealed properties that may account for some of the functional separation 

observed with RalA and RalB at a cellular level. Our mutations, in both the Ral isoforms and 

RLIP76, provide new tools that can be employed to parse the complex biology of Ral G protein 

signalling networks. The combination of this thermodynamic and structural data can also guide 

efforts to ablate RalA/B activity with small molecules and peptides. 
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The Ral proteins are small G proteins that are activated downstream of Ras. There are two human 

Ral proteins, RalA and RalB, which despite having 82% sequence identity at the amino acid level 

have distinct cellular functions. Both proteins have roles in the regulation of cytokinesis. RalA acts 

first to secure the exocyst complex to the cytokinetic furrow; this is followed by RalB activity, 

which engages the exocyst at the midbody of the cytoplasmic bridge to drive abscission
1
. RalB has 

been demonstrated to promote autophagocytosis
2
, while RalA controls mitochondrial fission at 

mitosis
3
. Both Ral proteins also have roles in targeted exocytosis, receptor mediated endocytosis 

and the regulation of the actin cytoskeleton and while individual roles have not been assigned to 

RalA and RalB in these processes, it seems likely they will emerge. In fact some specific roles are 

already known, for example, RalA drives polarized exocytosis in epithelial cells
4
, whereas RalB 

controls exocytosis during polarized cell migration
5
. Distinctive roles have also been assigned to 

RalA and RalB in the disease state: RalA is required for anchorage-independent proliferation in 

cancer cell lines, while RalB is necessary for tumour cells to avoid apoptosis
6
. 

 

In common with most other small G proteins, the Ral proteins are found in two forms. When 

bound to GDP, they are inactive but when bound to GTP, they adopt their active conformation and 

can engage with downstream effector proteins, initiate signalling cascades and control cellular 

outcomes. The functional individuality of RalA and RalB is even more surprising considering they 

interact with the same set of downstream effector proteins and therefore share control of the same 

collection of signalling pathways
7
. Proposals for the mechanism underlying the specific actions of 

the Ral proteins in the absence of differential sets of effector proteins include distinctive cellular 

localization and divergent activation. The active conformation of small G proteins is based around 
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two regions of the protein, known as switch 1 and switch 2, which are sensitive to the presence of 

the terminal phosphate in GTP. These switch regions mediate the majority of contacts with the 

effector proteins. RalA and RalB are identical in the switch regions, and most of the variation 

between the two proteins lies at their C-termini, beyond the structured G domain, in the residues 

that comprise the ‘hypervariable region’
8
. In most small G proteins, this region controls membrane 

localization
9
. Both proteins have been observed localized at the plasma membrane and also at 

endomembranes. RalA and RalB are geranylgeranylated at Cys203, which constitutes the primary 

membrane attachment cue and both contain multiple positively charged sidechains preceding this 

that could act as secondary membrane localization signals. Both proteins also carry 

phosphorylation sites in this region. RalA is phosphorylated at Ser183 and Ser194: pSer194 is a 

consequence of Aurora A activity and results in translocation of RalA to mitochondria
3
. RalB is 

phosphorylated by PKC on Ser198; the outcome of this is relocation to endomembranes
10

. Specific 

membrane localization could result in the Ral proteins encountering subsets of effector proteins 

and therefore activating specific signalling pathways. Likewise, specificity could also come via 

distinct actuation signals and activators. Ral proteins are activated by RalGEFs, some of which 

provide the direct link to Ras signalling. However there are currently six GEFs that have been 

identified for the Ral proteins
7
. In the case of cytokinesis, the distinct roles for RalA and RalB are 

designated by individual pairs of RalGEFs, which coordinate several input signals
1
. 

 

Several effector proteins have been identified for RalA and RalB. The first one to be identified was 

RLIP76 (also known as RalBP1 and RIP1
11-13

). RLIP76 appears to play multiple, disparate roles in 

Ral signalling
7
. Alongside RLIP76, two components of the exocyst complex, Sec5 and Exo84 are 
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the best-characterized effector proteins for the Ral proteins. Through these effectors the Ral 

proteins control polarized exocytosis
14

 but also non-exocyst functions including activation of 

TBK1
15

 and autophagosome assembly
2
. Ral proteins are also known to interact with ZONAB, a 

transcription regulator
16

, and filamin, the actin crosslinking protein
17

. Interestingly, the Ral 

proteins also seem to interact with phospholipase D and phospholipase C-1 but in a nucleotide-

independent manner
18, 19

. The latter four interactions are not as well characterized. There is some 

evidence that RalA and RalB do have differential affinity for their effector proteins
4
 and this would 

certainly contribute to conferring specific cellular roles to the proteins. 

 

We have previously solved the structure of the complex that forms between RalB and the RLIP76 

RBD
20

. We have now used this structure to design mutants of both RalB and RLIP76 to elucidate 

the thermodynamics of the binding interface produced by the two proteins interacting. In addition, 

we have used the panel of RalB mutants that we generated to probe the interaction between RalB 

and a second effector protein, Sec5. Comparing the energetic landscape of the two complexes has 

revealed mutations in RalB that differentially bind the two effector proteins. We have also used the 

RLIP76 mutants to probe the interaction between RLIP76 and RalA to compare the energetics of 

the RalA and RalB complexes. Despite 100% sequence identity in the RalA/B contact residues for 

RLIP76, differences still exist in the energetic profiles of the two complexes.  
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Methods 

Protein Expression Constructs 

Simian RalA C (residues 1-184) was amplified by PCR and cloned into pMAT10 (DO, 

unpublished) using BamHI and EcoRI sites that had been incorporated into the PCR primers. The 

resulting construct expresses RalA as an N-terminal His-MBP fusion protein with a thrombin 

cleavable tag. Full-length Simian RalA (residues 1-206) was amplified by PCR and cloned into 

pGEX-6P (GE Healthcare) using BamHI and EcoRI sites that had been incorporated into the PCR 

primers. RalB C (residues 1-185) was cloned into pET16b using NdeI and BamHI sites that had 

been incorporated into the PCR primers. Full-length Human RalB (residues 1-206) was amplified 

by PCR and cloned into pMAT10P (DO, unpublished) using BamHI and EcoRI sites that had been 

incorporated into the PCR primers. The resulting construct expresses RalB as an N-terminal His-

MBP fusion protein with the tag cleavable using PreScission protease.  All Ral expression 

constructs incorporate the activating mutation Q72L and were expressed in E. coli BL21(DE3) 

(Invitrogen).   

 

The RBD of human RLIP76 (393-446) was cloned into a modified version of pGEX-His-2
21

. A 

thrombin cleavage site was engineered into pGEX-His-2, 5' to the BamHI cloning site. RLIP76 

(393-446) was amplified by PCR and cloned into modified pGEX-His-2 using BamHI and XhoI 

restriction sites that had been incorporated into the PCR primers. The resulting construct expressed 

GST-RLIP76 RBD with a C-terminal His tag. The C411S mutation was introduced as described 

below. The construct was expressed in E. coli BL21 (Invitrogen). The Sec5 RBD expression 

construct has been described elsewhere
22

. 
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Recombinant Protein Production 

A stationary culture containing pMAT10-RalA C was diluted 1 in 10 into 2TY and grown to an 

A600 of ~0.8 at 37 °C, induced with 1mM IPTG and grown for a further 16 h at 20°C. Cells were 

lysed and the fusion protein purified using Ni-NTA resin (Qiagen) following manufacturer’s 

instructions. The fusion protein was cleaved with thrombin to remove the His-MBP tag. A 

stationary culture containing pGEX-6P-full-length RalA was diluted 1 in 10 into 2TY and grown 

to an A600 of ~0.8 at 37 °C, induced with 0.1mM IPTG and grown for a further 5 h at 37°C. Cells 

were lysed and the fusion protein purified using glutathione-agarose resin (Sigma-Aldrich) 

following manufacturer’s instructions. The fusion protein was cleaved with PreScission protease to 

remove the GST tag. A stationary culture containing pET16b-RalB was diluted 1 in 10 into 2TY 

and grown to an A600 of ~0.8 at 37 °C, induced with 1mM IPTG and grown for a further 3h at 

37°C. Cells were lysed and the fusion protein purified using Ni-NTA resin (Qiagen) as above. The 

fusion protein was cleaved with Factor Xa (Roche) to remove the His tag. A stationary culture 

containing pMAT10P-full-length RalB was diluted 1 in 10 into 2TY and grown to an A600 of ~0.8 

at 37 °C, induced with 1mM IPTG and grown for a further 16 h at 20°C. Cells were lysed and the 

fusion protein purified using Ni-NTA resin (Qiagen) as above. The fusion protein was cleaved 

with PreScission protease to remove the His-MBP tag. All Ral proteins were further purified by 

gel filtration (S75 16/60, GE Healthcare). 

 

A stationary culture of each RLIP76 RBD construct was diluted 1 in 10 into 2TY, grown to an A600 

of ~0.8 at 37 °C, induced with 0.1mM IPTG and grown for a further 5h at 37 °C. Cells were lysed 
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and the fusion protein purified using glutathione agarose (Sigma-Aldrich) following 

manufacturer’s instructions. The fusion protein was cleaved with thrombin to remove the GST tag 

and further purified by gel filtration (S30 16/60, GE Healthcare). An accurate concentration of 

each protein was determined using amino acid analysis by the Protein and Nucleic Acid Chemistry 

Facility, Dept. Biochemistry, University of Cambridge. This protein was then used directly in 

SPAs. Purification of the Sec5 RBD has been published previously
22

. 

 

Mutagenesis of the RLIP76 RBD 

Mutations were introduced, as specified, into the coding region of RLIP76 RBD using the 

QuikChange Lightning Multi Site Directed Mutagenesis Kit (Agilent) following manufacturer’s 

instructions. The sequences of the coding regions of all mutants were verified by the DNA 

Sequencing Facility, Department of Biochemistry, University of Cambridge.  

 

Nucleotide Exchange 

Ral proteins were labelled with [
3
H]GTP for use in binding assays as described previously

22
. 

 

Scintillation Proximity Assays (SPA) 

Affinities of Ral proteins for the RLIP76 RBD-His domain and its variants were measured using 

SPA. 80 nM of RLIP76 RBD-His variants were immobilised on Protein A SPA 

fluoromicrospheres via an anti-His antibody (Sigma-Aldrich). 20 nM GST-Sec5 was immobilized 

via an anti-GST antibody as described previously
22

. The equilibrium binding constants (Kd) of the 

effector-G protein interaction were determined by monitoring the SPA signal in the presence of 



 10 

varying concentrations of [
3
H]GTP·Ral,  as described previously

23
. Binding of Ral to the effector 

protein brings the radiolabelled nucleotide close enough to the scintillant to obtain a signal. For 

each Ral protein, an experiment was performed in the absence of effector, which resulted in a 

linear increase in background SPA counts. This data set was then subtracted from the data points 

obtained in the presence of effector and plotted as a function of increasing concentration of Ral 

protein.  For each affinity determination, data points were obtained for at least 10 different G 

protein concentrations. Binding curves were fitted using a direct binding isotherm 
23

 to obtain Kd 

values and their standard errors for the G protein-effector interactions.
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Results 

Binding affinity of RLIP76 RBD for Ral isoforms 

Previously we had measured the affinity of the RLIP76 RBD for both RalA and RalB and found 

that the two Ral isoforms interacted with similar affinities (our unpublished data and
20

). We 

described a similar situation with another Ral effector, Sec5
22

. For practical reasons, these 

measurements had been undertaken with RalA 1-206 (full-length) and RalB 1-185 (C-terminal 

truncation). This prompted us to investigate the binding affinities of full-length and truncated RalA 

and truncated RalB for the RLIP76 RBD, along with the RBD of a second Ral effector, Sec5 for 

comparison. The apparent Kd values for the interaction between the Ral variants and the RLIP76 

RBD were determined by SPA. The binding isotherms are shown in Figure 1 and the affinities are 

summarized in Table 1. Full-length RalA binds RLIP76 RBD with a Kd of 324 ± 22nM, while 

RalA C binds with a Kd of 264 ± 16 nM. RalB C binds with a Kd of 209 ± 14 nM. Despite 

repeated attempts, we were unable to purify sufficiently high quality full-length RalB to perform 

equivalent experiments with this variant. Full-length RalA binds Sec5 RBD with a Kd of 121 ± 

13nM, while RalA C binds with a Kd of 192 ± 15 nM. RalB C binds with a Kd of 135 ± 9 nM. 

The C-terminal tail of the Ral proteins, as with most small G proteins, is thought to direct 

membrane localization in the cell. As such it is usually unavailable for effector binding, although 

we have previously identified a role for the C-terminal polybasic region from one small G protein 

(Rac1) in effector binding
24

. These data indicate that full-length RalA and RalA C bind with 

equivalent affinity to RLIP 76 and Sec5. RalA C and RalB C also bind with similar affinities to 

each effector protein. We decided to proceed with a comparative study of RalA C and RalB C 
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binding to RLIP76 to look for thermodynamic differences in the two Ral-RLIP76 complexes.  

 

Thermodynamic mapping of the RLIP76 and Sec5 binding surfaces on RalB 

The structures of Ral proteins in complex with the RLIP76 and Sec5 Ral binding domains
25, 26

 

provided the starting points for mapping the energetics of the interface between RalB and these 

effectors. We analysed the interfaces of the complexes (PDB codes 1UAD and 2KWI) to identify 

residues on the small G protein that were within 4Å of an effector residue and mutated these to 

alanine in RalB. There are two sidechains in RalB that interact with these effectors that are already 

alanine: Ala48 and Ala77. Ala48 contacts both RLIP76 and Sec5 and was changed to Gly, so that 

the requirement for the alanine methyl group could be probed. Ala48 lies within switch 1, which is 

unstructured and highly flexible in active RalB, so substitution with a glycine is unlikely to affect 

the secondary structure. Ala77 is within a helix in switch 2 in RalB and interacts with His413 and 

various hydrophobic residues in RLIP76. We therefore mutated it to a larger, charged residue 

(Arg). Other mutations were also made as follows. Tyr36 forms a hydrogen bond in both Sec5 and 

RLIP76 complexes, so we mutated it to Phe, reasoning that this would remove the hydroxyl group, 

while maintaining the bulky aromatic ring. Glu38 forms a salt bridge with Arg27 in the Sec5 

complex, so we mutated it to Gln, hence removing the charge but maintaining the size of the 

sidechain. Two mutations were made to Thr46, although this residue does not interact directly with 

either effector. Thr46 is equivalent to Ras Thr35, whose mutation to Ser prevented Ras binding to 

RalGDS and PI3K but not to Raf
27, 28

. The T46S mutant is the direct equivalent and was tested to 

investigate whether this mutation would discriminate between RLIP76 and Sec5. The T46A 

mutation was also generated, to study the effect of removing the hydroxyl group completely. 
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Finally, the D49E mutation was generated because this is mutant is known to prevent binding to 

Sec5 but not to RLIP76 in yeast two-hybrid experiments
29

. This therefore allowed an assessment 

of whether the in vitro affinity measurements correlate with the effects of this mutation in a (yeast) 

cell.  

 

The apparent Kd values for the interaction between the RalB mutants and the RLIP76 and Sec5 

RBDs were determined by SPA. Selected binding isotherms are shown in Figure 2A and 2B and 

the affinities are summarized in Table 2. 

 

Mutations that reduce the binding between RLIP76 RBD and RalB include Y36A, T46A, T46S, 

D49A, Y51A, L67A, Y82A and R84A, which decrease the affinity more than 10-fold, mutations 

E38A and E73A, which decrease the affinity between 5 and 10-fold and mutations E38Q, A48G, 

R52A, I78A and N81A, which all decrease the affinity between 3 and 5-fold.  Interestingly one 

mutation, S50A, shows a small increase in binding affinity for RLIP76. Thus Tyr36, Thr46, 

Asp49, Tyr51, Leu67, Glu73, Tyr82 and Arg84 all contribute at least 1.2kcal/mol to the interface, 

with Tyr51 and Tyr82 making the largest individual contributions.  

 

Mutations Y36A/F, E38A/Q, T46A/S, D49E and Y51A all effectively abrogate binding to Sec5, 

mutations L14A, K47A and L67A all decrease the affinity for Sec5 between 3 and 7-fold. 

Mutations at other residues show only a minor effect or no change in the binding affinity. Mutation 

D49A shows a small increase in binding affinity for Sec5. 
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Thermodynamic mapping of the RalA and RalB binding surfaces on the RLIP76 RBD 

Having investigated the differences in thermodynamics between a Ral protein and two of its 

effector proteins, we next wanted to extend our studies to see if there were any differences in the 

energetic contributions of an effector protein for the two Ral proteins. RalA and RalB have 82% 

sequence identity but are 100% identical across the residues that contact RLIP76
20

 so we next 

investigated the energetic contributions of sidechains on the RLIP76 RBD to binding to the Ral 

small G proteins. In a similar manner to our dissection of the RalB interaction surface, we 

identified sidechains of RLIP76 residues that were within 4Å of a RalB sidechain in our RalB-

RLIP76 RBD structure and mutated them to alanine. The apparent Kd values for the interaction 

between the RLIP76 RBD mutants with RalB were determined by SPA. Selected binding 

isotherms are shown in Figure 3A and the affinities are summarized in Table 3. 

 

Substitution of RLIP76 residues His413, Trp430 and Thr437 with alanine ablated the binding to 

RalB, alanine substitutions of Leu409, Leu429 and Lys440 reduced the affinity significantly (16.5, 

22.8 and 8.8-fold respectively) and substitution of Leu416 with alanine reduced the affinity 4.7-

fold. Mutations at the remaining residues tested had deleterious effects on RalB binding but to a 

lesser extent and were thus considered to be individually insignificant. Exceptionally, introducing 

the Q417A mutation into the RLIP76 RBD enhanced binding to RalB by more than 2-fold. 

 

We then tested the same panel of RLIP76 RBD mutants for their ability to bind RalA. Selected 

binding isotherms are shown in Figure 3B and the affinities are summarized in Table 3. Similarly 

to RalB, mutation to alanine at residues Leu409, His413, Trp430, Thr437 and Lys440 all decrease 
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binding by ~9-fold or more. Mutation at residue Leu416 decreased the affinity 9-fold, which is 

larger than the reduction in affinity for RalB for this mutation, while mutation at Leu429 reduced 

the affinity by 5.6-fold, significantly less than the effect on RalB affinity. Mutating Arg434 to 

alanine abrogated binding to RalA but had very little effect (2-3-fold reduction) on RalB. The 

remaining residues, when mutated, all had a small detrimental affect on binding to RalA and were 

not considered to be significant, except Q433A, which had no affect on RalA binding. There were 

no mutations that increased the binding of RalA. 

 

Residues Leu409, His413, Leu429, Trp430, Thr437 and Lys440 all contribute >1.2 kcal/mol to the 

RLIP76-RalB interface. Residues Leu409, His413, Leu416, Tyr430, Arg434, Thr437 and Lys440 

of RLIP76 all contribute >1.2 kcal/mol to the RLIP76-RalA interface.  

 

Discussion 

Using our structure of RalB bound to the RLIP76 RBD
20

 and the structure of RalA bound to 

Sec5
26

, we have designed mutations to probe the thermodynamics of the binding interfaces and 

dissect the energetic contributions of specific RalB residues for these two effector proteins. Figures 

4A and 4B show heat maps for the RLIP76 and Sec5 binding surfaces on RalB. It is immediately 

striking that the energetically important binding surface for RLIP76 is much more extensive than 

that for Sec5. This is not surprising, since a comparison of the Ral complex structures reveals that 

the effectors themselves are strikingly different, as are the regions that they contact on the Ral 

proteins (Figures 4C and 4D). The Sec5 RBD has an all sheet, Ig-like fold, which forms an 

intermolecular antiparallel  sheet with the 2 strand of RalA, interacting exclusively with residues 
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in and around switch 1 and burying ~1000 Å
2
 in the interface

26
. The RLIP76 RBD-RalB structure

20
 

shows that the RLIP76 RBD forms a simple coiled-coil, which interacts with both switch 1 and 

switch 2 in RalB and buries ~1700 Å
2
. It is logical, therefore that we find residues with significant 

energetic input into RalB-RLIP76 complex formation across RalB switches 1 and 2. For Sec5 the 

highest energetic contributions are exclusively found from residues in switch 1 of RalB. These 

thermodynamic differences highlight certain RalB residues that if mutated would differentially 

discriminate between effectors. For example, RalB Y82A or D49A mutants would no longer bind 

to RLIP76 but would retain the ability to bind to Sec5. Conversely RalB Y36F or D49E should 

retain the ability to bind RLIP76 but no longer be competent to bind Sec5. Such mutations should 

be useful tools to dissect Ral effector pathways in vivo. In fact the affinities of the D49E mutant 

that we have quantified in vitro are in agreement with the results found for this mutation by yeast 

two-hybrid and by co-immunoprecipitation in HEK293T cells
29

. Thus all of the mutants that we 

describe here are likely to have the same effects in vivo as we have seen in vitro. 

 

Some of the residues whose mutation affects binding are not involved in directly contacting the 

effector but play a supporting role in maintaining the structure of the RalB interacting residues. For 

example, in both complexes Thr46 makes no direct contact with the effectors (Figure 4C, 4D) but 

its mutation to Ser or Ala reduces the binding to both significantly. As this Thr residue contacts the 

Mg
2+

 ion in the RalB protein it is not surprising that the integrity of the switch regions is 

compromised. The T46A/S mutants can still, however be loaded with the GTP-analogue and T46S 

shows some affinity for RLIP76. Similarly, Leu67, which is close to the interface in both 

complexes, forms hydrophobic contacts in RLIP76 but not in Sec5. In the latter it still has a small 
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effect on binding, presumably because it supports the RalB 2 strand, which is involved in an 

intermolecular -sheet with Sec5 (Figure 4D). This is also the case for Leu14, which is within 1 

and packs next to Leu67. Leu14 reduces Sec5 binding but not RLIP76 binding, highlighting the 

importance of the intermolecular -sheet in the Sec5 interaction. There are also supporting residues 

in the RalB-RLIP76 interaction whose mutations affect binding. The E38A mutant knocks out 

Sec5 binding and reduces RLIP76 binding. In the Sec5 complex Glu38 forms a salt bridge with 

Sec5 residue Arg27 but Glu38 does not contact RLIP76 directly. Instead, it is likely to be involved 

in maintaining the position of the neighbouring residue, Tyr36, which does contact RLIP76. It is 

possible that replacing the charged Glu38 with the smaller, hydrophobic Ala allows the 1 helix to 

be extended to residue 38, altering its conformation and that of switch 1. This is consistent with the 

observation that the E38Q mutation has a lesser effect on binding of RLIP76, since Gln38 is not 

charged but is more polar than Ala. A similar argument may explain the effect of the E73A mutant, 

which reduces the binding of RLIP76 5-fold. Glu73 is next to the switch 2 helix, 2, and its 

mutation to Ala is likely to alter 2 and therefore the ability of residues in this helix to contact 

RLIP76. 

 

Some of the mutations that we have tested here have previously been generated in RalA and their 

effects on Exo84 and Sec5 measured
30

. The effects on Sec5 binding were broadly consistent with 

our observations on the RalB-Sec5 interaction, for example, the E38A mutation did not affect 

Exo84 binding but reduced the affinity for Sec5 ~45-fold just as in RalB (Table 1). The R52A 

mutant of RalA bound to Sec5, with a similar affinity to wild-type, similar to its effects in RalB, 
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but reduced the affinity of Exo84 18-fold. Arg52 forms a hydrogen bond in the RalA-Exo84 

complex so the effects of this mutation can be explained.  

 

We next resolved the contribution of RLIP76 residues to complex formation with RalA and RalB. 

Figures 5A and 5B show the energetically important residues on RLIP76 for RalA and RalB 

binding. It is striking that although the residues in RalB that contact RLIP76 are 100% conserved 

in RalA, the binding hotspots on RLIP76 are not identical (Table 3):  removal of the Leu412 

sidechain has a small affect on RalA binding but does not change RalB binding; the L429A 

mutation reduces RalA binding less than 6-fold but has a more significant effect on RalB binding 

(23-fold); and R434A in the RLIP76 RBD abrogates binding to RalA completely, while binding to 

RalB is not significantly affected (less than 3-fold).  

 

Leu412 does not directly contact RalB and instead is packed within the RLIP76 coiled-coil directly 

behind Leu429. It is therefore likely that the effects of the L412A mutation are mediated via small 

changes in the orientation of the helices of the coiled-coil, which in turn lead to subtle 

rearrangements of the sidechains that do interact with the RalA molecule. Replacement of Leu412 

with the smaller Ala sidechain would create a cavity inside the coiled coil unless the two helices 

shift closer together. Such a shift would move one of the helices further away from the Ral 

molecule.  

 

Leu429 contacts three residues in RalB switch 2, Ala77, Asn81 and Tyr82, all of which are 

conserved in RalA. Arg434 makes contacts with Lys16 and Asp65, which again are conserved in 
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RalA. Indeed a comparison of all of the differences in sequence between the truncated versions of 

RalA and RalB that were used in this study shows that all of the changes are away from the switch 

regions and the RLIP76 binding site (Figure 5C). The most dramatic difference between RalA and 

RalB lies in the insertion of Ala116 in the loop between helix 3 and strand 5. The same loop is 

also modified by the substitution of the neutral Asn119 in RalA with Lys120 in RalB. These 

changes lead to a different conformation in this loop when RalA and RalB are compared. In both 

Ral proteins, this loop is mobile, exhibiting high temperature factors in the X-ray structures of 

RalA and dynamics on a psec-nsec timescale in RalB
22

. The insertion in the loop is likely to cause 

a subtle shift in the position of the C-terminus of helix 3, which is in direct contact with the 2 

helix at the C-terminus of switch 2 (Figure 5C). Any changes in switch 2 would also be readily 

transmitted to the 1 and 2 strands, which lie underneath switch 2. Hence, the changes in the 3-

5 loop sequence and length may be responsible for the differences in contribution of residues in 

switch 2 (Ala77, Asn81, Tyr82) and the 1/2 strands (Lys16, Asp65) to interactions with RLIP76 

Leu429 and Arg434. For the purposes of this discussion, we have assumed that Leu429 and 

Arg434 contact broadly the same residues in RalA as in RalB, which is likely although not certain 

in the absence of a RalA-RLIP76 structure.    

 

Interestingly substitution of one residue, Gln417, with Ala had little affect on RalA binding but 

slightly increased (2.2-fold) the affinity of the RalB complex. This residue also contacts RalB 

switch 2, via the sidechain of Tyr75. The effects of this mutation therefore also supports the idea 

that switch 2 is subtly different in the RalA and RalB isoforms. This is in agreement with our 
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NMR analysis, which suggests that switch 2 has some differences in msec timescale dynamics in 

the two Ral proteins (manuscript in preparation). 

 

A number of the mutations that we have identified are likely to mediate their effects on binding via 

medium range structural rearrangements. Allostery in GTPases has been observed in several 

situations and its exploitation is becoming increasingly important for targetting these proteins. 

Binding of calcium acetate to helix3-loop7 of Ha-Ras, in a crystallized form, results in structural 

rearrangements that ultimately order the N-terminal region of switch II and position Glu61 in the 

active site
31

. Identification of a unique pocket in the Ki-Ras G12C oncogenic variant prompted 

screening for binding compounds. This pocket is adjacent to the nucleotide binding site and 

binding compounds have been identified that change the nucleotide affinity leading to a preference 

for GDP over GTP and simultaneously block GEF activation using an allosteric mechanism
32

. A 

region adjacent to but distinct from the nucleotide binding site has also been utilized to target 

inhibitors to the Ral GTPases. Again binding to this allosteric site is sufficient to modulate GTPase 

activity in vitro and in vivo
33

. Dynamic exchange between different conformations is also well 

documented in small G proteins. NMR has shown that Ha-Ras bound to GTP or GTP analogues 

exhibits dynamics on a msec timescale
34, 35

. Furthermore, 
31

P NMR experiments suggested the 

presence of multiple conformations in active forms of small GTPases
22, 36

.  Taken together these 

studies demonstrate the importance of conformational and structure flexibility to small G protein 

function and also establish the utility of this feature as a means of attacking these proteins 

therapeutically.  
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In summary, our hotspot analysis of the binding of RLIP76 to RalA and RalB suggests that at least 

some of the differences in the Ral proteins lie in the structure and dynamics of switch 2 and the 

consequences for effector binding that ensue. We have identified some residues of RLIP76 that can 

be mutated to prevent its binding to both RalA and RalB e.g. His413 and Trp430. Furthermore, we 

have identified two residues whose mutation will allow discrimination between the Ral isoforms: 

the L429A mutation will reduce RalB binding significantly more than RalA binding, while the 

R434A mutation abrogates RalA binding but has little effect on RalB binding. These mutants 

represent essential tools for dissecting the roles of RalA and RalB in vivo. 
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Table 1: The affinities of Ral variants for RLIP76 and Sec5 RBDs 

 Apparent Kd (nM)a 

 RLIP76 RBD Sec5 RBD 

fl RalA, Q72L 324 ± 22 121 ± 13 

RalA C, Q72L 264 ± 16 192 ± 15 

RalB C, Q72L 209 ± 14 135 ± 9 

aEquilibrium binding constants were determined in SPAs as described in the 
Materials and methods. Kd values are quoted with the standard errors from curve 
fitting  
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Table 2: The affinities of RalB mutants for RLI76 RBD and Sec5 RBD 

 RLIP76  Sec5 

RalB Kd (nM)a G 
(cal/mol) 

G 
(calmol) 

Fold 
Change 

Kd (nM) G 
(cal/mol) 

G 
(calmol) 

Fold 
Change 

Q72L (wt) 216 19 -9088 - - 238  15 -9030 - - 

L14A,Q72L 300  32 -8893 -195 1.4X  1590  112 -7906 -1124 6.7X  

Y36A,Q72L 3040  91 -7522 -1371 10.1X  NB   >50X  

Y36F,Q72L 335  28 -8828 -260 1.5X  7300  1600 -7003 -2027 30.7X  

E38A,Q72L 1390  112b -7986 -1102 6.4X  NB   >50X  

E38Q,Q72L 1050  50.1 -8152 -936 4.9X  4460  506 -7295 -1735 18.7X  

T46A,Q72L NBc   >50X  NB   >50X  

T46S,Q72L 4130  283 -7340 -1553 13.8X  NB   >50X  

K47A,Q72L 339 35 -8821 -267 1.6X  763  35 -8341 -689 3.2X  

A48G,Q72L 945  6 1 -8214 -874 4.4X  297  18 -8899 -131 1.2X  

D49A,Q72L 2330  349 -7680 -1353 10.8X  175  5 -9213 +183 0.7X  

D49E,Q72L 369  25 -8771 -317 1.7X  NB   >50X  

S50A,Q72L 140  29 -9345 +257 0.6X  990  79 -8186 -844 4.2X  

Y51A,Q72L NB   >50X  NB   >50X  

R52A,Q72L 682  112 -8407 -681 3.2 371  20 -8768 -262 1.6X  

L67A,Q72L 2680  141 -7597 -1491 10.3X  1040  120 -8157 -873 4.4X  

E73A,Q72L 1090  127 -8129 -959 5.0X  697 35 -8394 -636 2.9X  

D74A,Q72L 326  34 -8844 -244 1.6X  311 11 -8872 -158 1.3X  

Y75A,Q72L 544  15 -8541 -547 2.5X  413  35 -8704 -326 1.7X  

A77R,Q72L 585  50 -8498 -590 2.7X  203  11 -9125 +95 - 

I78A, Q72L 724  55 -8372 -716 3.4X  206  11 -9116 +86 - 

N81A,Q72L 696  52 -8395 -693 3.2X  491  48 -8602 -428 2.1X  

Y82A,Q72L 12080  3300 -3377 -5711 55X  230  18 -9051 +21 - 

R84A,Q72L 2320  89 -7682 -1496 10.7X  501  21 -8590 -440 2.1X  
a Equilibrium binding constants were determined in SPAs as described in the Materials and methods. Kd values are quoted 
with the standard errors from curve fitting  
b Kd values of greater than 1000 nM (1M) are based on data where it was not possible to achieve high enough 
concentrations to obtain a full binding curve. As such Kd values are subject to errors. 
c NB (no binding) denotes data that could not be fitted to the binding isotherm 
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Table 3: The affinities of RLIP76 RBD mutants for Ral isoforms
a
 

 RalA RalB 

RLIP76 RBD Kd (nM) 
 

G (cal/mol) G (cal/mol) Fold 
Change 

Kd (nM) 
 

G (cal/mol) G (cal/mol) Fold 
Change

C411S (wt) 185 ± 5 -9180 - - 261 ± 17 -8976 - - 

L409A,C411S 1880 ± 297b -7807 -1373 10.0X  4300 ± 1400 -7317 -1659 16.5X  

L412A,C411S 774 ± 123 -8332 -848 4.2X  228 ± 24 -9056 - - 

H413A,C411S NBc   >69X  NB   > 16X  

L416A,C411S 1700 ± 309 -7866 -1314 9.2X  1240 ± 147 -8053 -923 4.7X  

Q417A,C411S 126 ± 27 -9407 - - 99 ± 22 -9550 +574 2.2X  

K421A,C411S 433 ± 37 -8676 -504 2.3X  441 ± 30 -8665 -311 0.6X  

E426A,C411S 437 ± 131 -8671 -509 2.4X  670 ± 33 -8418 -558 2.6X  

E427A,C411S 452 ± 45 -8651 -529 2.4X  618 ± 39 -8465 -511 2.4X  

L429A,C411S 1030 ± 308 -8163 -1017 5.6X  5940 ± 928 -3588 -5388 22.8X  

W430A,C411S NB   >69X  NB   > 16X  

Q433A,C411S 216 ± 43 -9088 - - 197 ± 20 -9142 - - 

R434A,C411S NB   >69X  678 ± 77 -8411 -565 2.6X  

T437A,C411S NB   >69X  NB   > 16X  

K440A,C411S 1590 ± 410 -7906 -1274 8.6X  2300 ± 450 -7687 -1289 8.8X  
a Equilibrium binding constants were determined in SPAs as described in the Materials and methods. Kd values are quoted with the standard errors from curve 
fitting  
b Kd values of greater than 1000 nM (1M) are based on data where it was not possible to achieve high enough concentrations to obtain a full binding curve. As 
such Kd values are subject to errors. 
c NB (no binding) denotes data that could not be fitted to the binding isotherm 
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Figure 1: SPA binding data for full-length RalA, truncated RalA and truncated RalB with 

the RLIP76 RBD and the Sec5 RBD. The indicated concentration of [
3
H]GTP-labelled G protein 

was incubated with either His-tagged RLIP76 RBD or GST-tagged Sec5 RBD, as appropriate, in 

each SPA. The SPA signal was corrected by subtraction of the background signal from parallel 

measurements in which the effector protein was omitted. The effect of the concentration of G 

protein on this corrected SPA signal was fitted to a binding isotherm to give an apparent Kd value 

and the signal at saturating G protein concentrations. The data and curve fits are displayed as a 

percentage of this maximal signal: (A) binding isotherms of full-length and truncated RalA and 

truncated RalB with RLIP76 RBD, (B) binding isotherms of full-length and truncated RalA and 

truncated RalB with Sec5 RBD.  

Figure 2: SPA binding data for truncated RalB and mutant variants with the RLIP76 RBD 

and the Sec5 RBD. The indicated concentration of [
3
H]GTP-labelled G protein was incubated 

with either His-tagged RLIP76 RBD or GST-tagged Sec5 RBD, as appropriate, in each SPA. The 

SPA signal was corrected by subtraction of the background signal from parallel measurements in 

which the effector protein was omitted. The effect of the concentration of G protein on this 

corrected SPA signal was fitted to a binding isotherm to give an apparent Kd value and the signal at 

saturating G protein concentrations. The data and curve fits are displayed as a percentage of this 

maximal signal: (A) binding isotherms of truncated RalB and mutants with the RLIP76 RBD, (B) 

binding isotherms of truncated RalB and mutants with the Sec5 RBD. 

 

Figure 3: SPA binding data for the RLIP RBD and mutant variants with truncated RalA and 

RalB. The indicated concentration of [
3
H]GTP-labelled G protein was incubated with the 
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appropriate His-tagged RLIP76 RBD variant in each SPA. The SPA signal was corrected by 

subtraction of the background signal from parallel measurements in which the effector protein was 

omitted. The effect of the concentration of G protein on this corrected SPA signal was fitted to a 

binding isotherm to give an apparent Kd value and the signal at saturating G protein concentrations. 

The data and curve fits are displayed as a percentage of this maximal signal: (A) binding isotherms 

of the RLIP76 RBD variants with truncated RalB, (B) binding isotherms of the RLIP76 RBD 

variants with truncated RalA. 

 

Figure 4: Structural details of the RalB-RLIP76 and RalB-Sec5 interfaces. 

A. Residues whose mutation to Ala affects binding to RLIP76. RalB is shown in a blue ribbon 

representation, overlaid with a semi-transparent blue surface. Relevant residues are coloured as 

follows: red, more than 10-fold weaker affinity; orange, 5 to 10-fold weaker affinity; yellow, 3 to 

5-fold weaker affinity. Switch 1 encompasses residues 40-50 and switch 2 encompasses residues 

70-84, as assigned by comparing the structures in PDB entries 1U8Y and 1U90
37

.  

B. Residues whose mutation to Ala affects binding to Sec5. The colours are the as the same as in 

A.  

C. The structure of the RalB-RLIP76 complex (PDB 2KWI) is shown with the residues whose 

mutation affects RLIP binding shown as sticks. RalB is blue, RLIP76 is dark pink. The mutated 

residues are shown in the same colour scheme as in A. 

D. A model of RalB-Sec5 is shown, constructed using Modeller
38

 based on PDB 1UAD, with the 

residues that affect Sec5 binding shown as sticks. RalB is blue and Sec5 is pale pink. The mutated 

residues are shown in the same colour scheme as in A. 
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Figure 5: Hotspots on RLIP76 for binding to Ral proteins 

A. Residues whose mutation to Ala disrupts binding to RalA. Relevant residues are coloured as 

follows: red, more than 10-fold weaker affinity; orange, 5 to 10-fold weaker affinity; yellow, 3 to 

5-fold weaker affinity.    

B. Residues whose mutation to Ala disrupts binding to RalB. The colour scheme for residues is the 

same as in A. 

C. The two residues whose mutation has drastically different effects on RalA and RalB binding to 

RLIP76. RalB is blue and RLIP76 is dark pink. Leu429 and Arg434 are shown in green and the 

residues that they contact in RalB are shown in yellow. The positions of conservative changes 

between RalA and RalB are shown as cyan spheres: these include Asp/Glu, Lys/Arg, Val/Ile/Leu 

or Asn/Gln exchanges only. The positions of less conservative changes between the two proteins 

are shown as orange spheres. Finally, the position of a single amino acid insertion (Ala116) in 

RalB is shown as a red sphere. 

 

 


