2,052 research outputs found

    Trapping of waves by a submerged elliptical torus

    Get PDF
    An investigation is made into the trapping of surface gravity waves by totally submerged three-dimensional obstacles and strong numerical evidence of the existence of trapped modes is presented. The specific geometry considered is a submerged elliptical torus. The depth of submergence of the torus and the aspect ratio of its cross-section are held fixed and a search for a trapped mode is made in the parameter space formed by varying the radius of the torus and the frequency. A plane wave approximation to the location of the mode in this plane is derived and an integral equation and a side condition for the exact trapped mode are obtained. Each of these conditions is satisfied on a different line in the plane and the point at which the lines cross corresponds to a trapped mode. Although it is not possible to locate this point exactly, because of numerical error, existence of the mode may be inferred with confidence as small changes in the numerical results do not alter the fact that the lines cross. If the torus makes small vertical oscillations, it is customary to try and express the fluid velocity as the gradient of the so-called heave potential, which is assumed to have the same time dependence as the body oscillations. A necessary condition for the existence of this potential at the trapped mode frequency is derived and numerical evidence is cited which shows that this condition is not satisfied for an elliptical torus. Calculations of the heave potential for such a torus are made over a range of frequencies, and it is shown that the force coefficients behave in a singular fashion in the vicinity of the trapped mode frequency. An analysis of the time domain problem for a torus which is forced to make small vertical oscillations at the trapped mode frequency shows that the potential contains a term which represents a growing oscillation

    Investigating Stormwater Parameters from Runoff on East Tennessee State University Campus

    Get PDF
    Climate change has caused an increase in extreme rain events and flooding in certain regions across the globe. During rain events, water flows over impervious surfaces structures such as roads and sidewalks, picking up contaminants such as metals, fertilizers and other nutrients, and various organics that which may impact organisms in such as streams, river, and lakes. Previous work has found significant differences in survival of organisms that were exposed to contaminated stormwater runoff. This study investigated stormwater chemistry parameters at collection sites on the East Tennessee State University campus. Sites were selected based on the extent of human interaction and traffic in the areas. Additionally, acute toxicity of stormwater samples was investigated through 48-h bioassays with the cladoceran, Daphnia magna. In September and November 2022, water chemistry and toxicity analyses were conducted across multiple rain events and over a six-hour time course of an individual rain event. For each of the events and the time course, chlorophyll levels, specific conductivity, pH, temperature, and dissolved oxygen were measured. No statistical difference between the water chemistry parameters between sampling sites or between rain events were observed. Additionally, no significant differences in 48-h survival of D. magna were detected between sampling locations or during the single event time course study. These data suggest that there were no pollutant surges at the collection sites and that D. manga survival was not affected by the contaminants

    Nonlinear optical probe of tunable surface electrons on a topological insulator

    Get PDF
    We use ultrafast laser pulses to experimentally demonstrate that the second-order optical response of bulk single crystals of the topological insulator Bi2_2Se3_3 is sensitive to its surface electrons. By performing surface doping dependence measurements as a function of photon polarization and sample orientation we show that second harmonic generation can simultaneously probe both the surface crystalline structure and the surface charge of Bi2_2Se3_3. Furthermore, we find that second harmonic generation using circularly polarized photons reveals the time-reversal symmetry properties of the system and is surprisingly robust against surface charging, which makes it a promising tool for spectroscopic studies of topological surfaces and buried interfaces

    Algorithmic Analysis of Qualitative and Quantitative Termination Problems for Affine Probabilistic Programs

    Full text link
    In this paper, we consider termination of probabilistic programs with real-valued variables. The questions concerned are: 1. qualitative ones that ask (i) whether the program terminates with probability 1 (almost-sure termination) and (ii) whether the expected termination time is finite (finite termination); 2. quantitative ones that ask (i) to approximate the expected termination time (expectation problem) and (ii) to compute a bound B such that the probability to terminate after B steps decreases exponentially (concentration problem). To solve these questions, we utilize the notion of ranking supermartingales which is a powerful approach for proving termination of probabilistic programs. In detail, we focus on algorithmic synthesis of linear ranking-supermartingales over affine probabilistic programs (APP's) with both angelic and demonic non-determinism. An important subclass of APP's is LRAPP which is defined as the class of all APP's over which a linear ranking-supermartingale exists. Our main contributions are as follows. Firstly, we show that the membership problem of LRAPP (i) can be decided in polynomial time for APP's with at most demonic non-determinism, and (ii) is NP-hard and in PSPACE for APP's with angelic non-determinism; moreover, the NP-hardness result holds already for APP's without probability and demonic non-determinism. Secondly, we show that the concentration problem over LRAPP can be solved in the same complexity as for the membership problem of LRAPP. Finally, we show that the expectation problem over LRAPP can be solved in 2EXPTIME and is PSPACE-hard even for APP's without probability and non-determinism (i.e., deterministic programs). Our experimental results demonstrate the effectiveness of our approach to answer the qualitative and quantitative questions over APP's with at most demonic non-determinism.Comment: 24 pages, full version to the conference paper on POPL 201

    Teaching forest stand dynamics or what happens when you thin your Marigold plantation

    Get PDF
    Teaching forestry students about forest stand dynamics can be an abstract activity. Very quickly concepts are reduced to mathematical formulae, graphs and diagrams, all with relatively complicated explanations. Alternatively, computer simulation and individual tree models can be used to demonstrate important concepts such as the \u273/2 Power law\u27 of self thinning. Students can also be taken to visit plantations to talk about practical issues of density management and perhaps produce a thinning prescription. However, no single teaching strategy enables students to have \u27hands on\u27 practice at manipulating a real plant population while being able to wait and see the results of their work

    Measuring patient-perceived quality of care in US hospitals using Twitter

    Get PDF
    BACKGROUND: Patients routinely use Twitter to share feedback about their experience receiving healthcare. Identifying and analysing the content of posts sent to hospitals may provide a novel real-time measure of quality, supplementing traditional, survey-based approaches. OBJECTIVE: To assess the use of Twitter as a supplemental data stream for measuring patient-perceived quality of care in US hospitals and compare patient sentiments about hospitals with established quality measures. DESIGN: 404 065 tweets directed to 2349 US hospitals over a 1-year period were classified as having to do with patient experience using a machine learning approach. Sentiment was calculated for these tweets using natural language processing. 11 602 tweets were manually categorised into patient experience topics. Finally, hospitals with ≥50 patient experience tweets were surveyed to understand how they use Twitter to interact with patients. KEY RESULTS: Roughly half of the hospitals in the US have a presence on Twitter. Of the tweets directed toward these hospitals, 34 725 (9.4%) were related to patient experience and covered diverse topics. Analyses limited to hospitals with ≥50 patient experience tweets revealed that they were more active on Twitter, more likely to be below the national median of Medicare patients (p<0.001) and above the national median for nurse/patient ratio (p=0.006), and to be a non-profit hospital (p<0.001). After adjusting for hospital characteristics, we found that Twitter sentiment was not associated with Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) ratings (but having a Twitter account was), although there was a weak association with 30-day hospital readmission rates (p=0.003). CONCLUSIONS: Tweets describing patient experiences in hospitals cover a wide range of patient care aspects and can be identified using automated approaches. These tweets represent a potentially untapped indicator of quality and may be valuable to patients, researchers, policy makers and hospital administrators

    Upland forestry field course, Scotland

    Get PDF

    Charge Transfer to Solvent Dynamics at the Ambient Water/Air Interface

    Get PDF
    Electron-transfer reactions at ambient aqueous interfaces represent one of the most fundamental and ubiquitous chemical reactions. Here the dynamics of the charge transfer to solvent (CTTS) reaction from iodide was probed at the ambient water/air interface by phase-sensitive transient second-harmonic generation. Using the three allowed polarization combinations, distinctive dynamics assigned to the CTTS state evolution and to the subsequent solvating electron-iodine contact pair have been resolved. The CTTS state is asymmetrically solvated in the plane of the surface, while the subsequent electron solvation dynamics are very similar to those observed in the bulk, although slightly faster. Between 3 and 30 ps, a small phase shift distinguishes an electron bound in a contact pair with iodine and a free hydrated electron at the water/air interface. Our results suggest that the hydrated electron is fully solvated in a region of reduced water density at the interface

    Wrinkling of a bilayer membrane

    Get PDF
    The buckling of elastic bodies is a common phenomenon in the mechanics of solids. Wrinkling of membranes can often be interpreted as buckling under constraints that prohibit large amplitude deformation. We present a combination of analytic calculations, experiments, and simulations to understand wrinkling patterns generated in a bilayer membrane. The model membrane is composed of a flexible spherical shell that is under tension and that is circumscribed by a stiff, essentially incompressible strip with bending modulus B. When the tension is reduced sufficiently to a value \sigma, the strip forms wrinkles with a uniform wavelength found theoretically and experimentally to be \lambda = 2\pi(B/\sigma)^{1/3}. Defects in this pattern appear for rapid changes in tension. Comparison between experiment and simulation further shows that, with larger reduction of tension, a second generation of wrinkles with longer wavelength appears only when B is sufficiently small.Comment: 9 pages, 5 color figure

    Physical activity behaviours of highly active preschoolers

    Get PDF
    Background: Understanding the physical activity behaviour of young children who are highly active mayprovide important guidance for promoting physical activity in preschools.Objectives: The objective of this study was to describe the movement characteristics of high-active (HA)children during attendance at preschools.Methods: Children in 20 preschools (n = 231) wore accelerometers and were classified into tertiles ofmoderate-to-vigorous physical activity. Children's movement characteristics were observed using the Observational System for Recording Physical Activity in Children – Preschool Version. Mixed-model analyses compared movement types between HA children and lower-active (LA) children during the total school day.Results: HA (n = 77) children were observed to be more active than LA children (n = 154) indoors(P &lt; 0.001), but no differences were observed outdoors. HA children were more frequently observed running, crawling, climbing, jumping, skipping, swinging and throwing across the total school day than LA children. Outdoors, HA children participated in more swinging and throwing and less jumping or skipping than LA children. Indoors, HA children spent more time pulling, pushing and running, and less time walking than LA children.Conclusions: HA children have unique activity patterns. Further interventions to increase physical activity of all preschoolers should increase the time spent outside and include varied activity types throughout the entire school day
    • …
    corecore