2,692 research outputs found
The potential role of arteriolar vasodilator responsiveness in orthostatic intolerance
Due to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to [email protected], referencing the URI of the item.Includes bibliographical references (leaves 35-41).Astronauts returning to earth experience hypotension from hours to days. The subsequent inability to maintain the upright (orthostatic) position diminishes work capacity. Orthostatic hypotension appears to result from weightlessness-induced cardiovascular adaptations, such as resistance vessel (arteriole) adaptations. This study investigates the effects of hindlimb unloading (simulated microgravity) on vasodilatory properties of rat skeletal muscle arterioles. Rodent hindlimb unloading is an established model of microgravity that provides the headward fluid shifts and unloading of postural muscles that occur in space. Sprague-Dawley rats were assigned to two groups: control rats (C, n =8) and hindlimb unloaded (HU, n =5). HU rats were tail suspended for 2 weeks. First order (1A) arterioles were dissected from both control and hindiimb unloaded rats and cannulated on micro-pippettes under constant pressure (60 cm H20). Vasodilatory response curves were produced by the cumulative addition of acetylcholine, adenosine, isoproterenal and sodium nitroprusside. Results indicate that hindlimb unloaded soleus muscle arterioles exhibited a decrease in acetylcholine induced dilation and gastrocnemius muscle arterioles produced diminished isoproterenol-induced dilation. Thus, dilatory properties of resistance vessels are not altered by simulated microgravity in a way that contributes to orthostatic hypotension. Since soleus muscle blood flow is known to decrease by an order of magnitude during hindlimb unloading, the shear stress against the vessel wall is reduced. Acetylcholine induces dilation through a mechanism that is similar to shear stress-induced dilation. Thus, the diminished dilation in the soleus muscle arterioles provides further evidence for elucidating a possible mechanism for the diminished aerobic capacity experienced after simulated and genuine weightlessness
Variational treatment of electron-polyatomic molecule scattering calculations using adaptive overset grids
The Complex Kohn variational method for electron-polyatomic molecule
scattering is formulated using an overset grid representation of the scattering
wave function. The overset grid consists of a central grid and multiple dense,
atom-centered subgrids that allow the simultaneous spherical expansions of the
wave function about multiple centers. Scattering boundary conditions are
enforced by using a basis formed by the repeated application of the free
particle Green's function and potential, on the overset
grid in a "Born-Arnoldi" solution of the working equations. The theory is shown
to be equivalent to a specific Pad\'e approximant to the -matrix, and has
rapid convergence properties, both in the number of numerical basis functions
employed and the number of partial waves employed in the spherical expansions.
The method is demonstrated in calculations on methane and CF in the
static-exchange approximation, and compared in detail with calculations
performed with the numerical Schwinger variational approach based on single
center expansions. An efficient procedure for operating with the free-particle
Green's function and exchange operators (to which no approximation is made) is
also described
Development of an annoyance model based upon elementary auditory sensations for steady-state aircraft interior noise containing tonal components
The purpose of this investigation was to develop a noise annoyance model, superior to those already in use, for evaluating passenger response to sounds containing tonal components which may be heard within current and future commercial aircraft. The sound spectra investigated ranged from those being experienced by passengers on board turbofan powered aircraft now in service to those cabin noise spectra passengers may experience within advanced propeller-driven aircraft of the future. A total of 240 sounds were tested in this experiment. Sixty-six of these 240 sounds were steady state, while the other 174 varied temporally due to tonal beating. Here, the entire experiment is described, but the analysis is limited to those responses elicited by the 66 steady-state sounds
Key Technologies, Systems, and Infrastructure Enabling the Commercialization and Human Settlement of the Moon and Cislunar Space
Over 50 years have passed since 2001: A Space Odyssey debuted in April 1968. In the film, Dr. Heywood Floydflies to a large artificial gravity space station orbiting Earth aboard a commercial space plane. He then embarks on acommuter flight to the Moon arriving there 25 hours later. Today, in this the 50th anniversary year of the Apollo 11lunar landing, the images portrayed in 2001 still remain well beyond our capabilities. This paper examines keytechnologies and systems (e.g., in-situ resource utilization, fission power, advanced chemical and nuclearpropulsion), and supporting orbital infrastructure (providing a propellant and cargo transfer function), that could bedeveloped by NASA and industry over the next 30 years allowing the operational capabilities presented in 2001 to beachieved, albeit on a more spartan scale. Lunar-derived propellants (LDPs) will be essential to developing a reusablelunar transportation system that can allow initial outposts to evolve into settlements supporting a variety ofcommercial activities. Deposits of icy regolith discovered at the lunar poles can supply the feedstock material neededto produce liquid oxygen (LO2) and hydrogen (LH2) propellants. On the lunar nearside, near the equator, iron oxiderichvolcanic glass beads from vast pyroclastic deposits, together with mare regolith, can provide the feedstockmaterials to produce lunar-derived LO2 plus other important solar wind implanted (SWI) volatiles, including H2and helium-3. Megawatt-class fission power systems will be essential for providing continuous "24/7" power toprocessing plants, human settlements and commercial enterprises that develop on the Moon and in orbit. Reusablelunar landing vehicles will provide cargo and passenger "orbit-to-surface" access and will also transport LDP to Space Transportation Nodes (STNs) located in lunar polar (LPO) and equatorial orbits (LLO). Reusable space-based,lunar transfer vehicles (LTVs), operating between STNs in low Earth orbit, LLO, and LPO, and able to refuel with LDPs, offer unique mission capabilities including short transit time crewed cargo transports. Even commuter flights similar to that portrayed in 2001 appear possible, allowing 1-way trip times to and from the Moon as short as 24hours. The performance of LTVs using both RL10B-2 chemical rockets, and a variant of the nuclear thermal rocket(NTR), the LO2-Augmented NTR (LANTR), are examined and compared. If only 1% of the LDP obtained from icyregolith, volcanic glass, and SWI volatile deposits were available for use in lunar orbit, such a supply could support routine commuter flights to the Moon for many thousands of years. This paper provides a look ahead at what might be possible in the not too distant future, quantifies the operational characteristics of key in-space and surface technologies and systems, and provides conceptual designs for the various architectural elements discussed
Solving the Coulomb scattering problem using the complex scaling method
Based on the work of Nuttall and Cohen [Phys. Rev. {\bf 188} (1969) 1542] and
Resigno et al{} [Phys. Rev. A {\bf 55} (1997) 4253] we present a rigorous
formalism for solving the scattering problem for long-range interactions
without using exact asymptotic boundary conditions. The long-range interaction
may contain both Coulomb and short-range potentials. The exterior complex
scaling method, applied to a specially constructed inhomogeneous Schr\"odinger
equation, transforms the scattering problem into a boundary problem with zero
boundary conditions. The local and integral representations for the scattering
amplitudes have been derived. The formalism is illustrated with numerical
examples.Comment: 3 pages, 3 figure
Key Technologies, Systems, and Infrastructure Enabling the Commercialization and Human Settlement of the Moon and Cislunar Space
Over 50 years have passed since 2001: A Space Odyssey debuted in April 1968. In the film, Dr. Heywood Floydflies to a large artificial gravity space station orbiting Earth aboard a commercial space plane. He then embarks on acommuter flight to the Moon arriving there 25 hours later. Today, in this the 50th anniversary year of the Apollo 11lunar landing, the images portrayed in 2001 still remain well beyond our capabilities. This paper examines keytechnologies and systems (e.g., in-situ resource utilization, fission power, advanced chemical and nuclearpropulsion), and supporting orbital infrastructure (providing a propellant and cargo transfer function), that could bedeveloped by NASA and industry over the next 30 years allowing the operational capabilities presented in 2001 to beachieved, albeit on a more spartan scale. Lunar-derived propellants (LDPs) will be essential to developing a reusablelunar transportation system that can allow initial outposts to evolve into settlements supporting a variety ofcommercial activities. Deposits of icy regolith discovered at the lunar poles can supply the feedstock material neededto produce liquid oxygen (LO2) and hydrogen (LH2) propellants. On the lunar nearside, near the equator, iron oxiderichvolcanic glass beads from vast pyroclastic deposits, together with mare regolith, can provide the feedstockmaterials to produce lunar-derived LO2 plus other important solar wind implanted (SWI) volatiles, including H2and helium-3. Megawatt-class fission power systems will be essential for providing continuous "24/7" power toprocessing plants, human settlements and commercial enterprises that develop on the Moon and in orbit. Reusablelunar landing vehicles will provide cargo and passenger "orbit-to-surface" access and will also transport LDP toSpace Transportation Nodes (STNs) located in lunar polar (LPO) and equatorial orbits (LLO). Reusable space-based,lunar transfer vehicles (LTVs), operating between STNs in low Earth orbit, LLO, and LPO, and able to refuel withLDPs, offer unique mission capabilities including short transit time crewed cargo transports. Even commuter flightssimilar to that portrayed in 2001 appear possible, allowing 1-way trip times to and from the Moon as short as 24hours. The performance of LTVs using both RL10B-2 chemical rockets, and a variant of the nuclear thermal rocket(NTR), the LO2-Augmented NTR (LANTR), are examined and compared. If only 1% of the LDP obtained from icyregolith, volcanic glass, and SWI volatile deposits were available for use in lunar orbit, such a supply could supportroutine commuter flights to the Moon for many thousands of years. This paper provides a look ahead at what mightbe possible in the not too distant future, quantifies the operational characteristics of key in-space and surfacetechnologies and systems, and provides conceptual designs for the various architectural elements discussed
Commercial and Human Settlement of the Moon and Cislunar Space A Look Ahead at the Possibilities over the Next 50 Years
Over 50 years have passed since the movie 2001: A Space Odyssey debuted in April 1968. In the film, Dr. Heywood Floyd flies to a large artificial gravity space station orbiting Earth aboard a commercial space plane. He then embarks on a commuter flight to the Moon arriving there 25 hours later. Today, on the 50th anniversary of the Apollo 11 lunar landing, the images portrayed in 2001 still remain well beyond our capabilities. This paper examines key technologies and systems (in-situ resource utilization, fission power, advanced chemical and nuclear propulsion), and orbiting infrastructure elements (providing a propellant depot and cargo transfer function), that could be developed by NASA and the private sector in future decades allowing the operational capabilities presented in 2001 to be achieved, albeit on a more spartan scale. Lunar-derived propellants (LDPs) will be essential to reducing the launch mass requirements from Earth and developing a reusable lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supporting a variety of commercial activities like in-situ propellant production. Deposits of icy regolith found within permanently shadowed craters at the lunar poles can supply the feedstock material to produce liquid oxygen (LO2) and hydrogen (LH2) propellant needed by surface-based lunar landing vehicles (LLVs) using chemical rocket engines. Along the Moons nearside equatorial corridor, iron oxide-rich volcanic glass beads from vast pyroclastic deposits, together with mare regolith, can provide the materials to produce lunar-derived LO2 plus other important solar wind implanted (SWI) volatiles, including H2 and helium-3. Megawatt-class fission power systems will be essential for providing continuous 24/7 power to processing plants, evolving human settlements, and other commercial activities that develop on the Moon and in orbit. Reusable LLVs will provide cargo and passenger orbit-to-surface access and will also be used to transport LDP to Space Transportation Nodes (STNs) located in lunar polar (LPO) and equatorial orbits (LLO). Spaced-based, reusable lunar transfer vehicles (LTVs), operating between STNs in low Earth orbit (LEO), LLO, and LPO, and able to refuel with LDPs, can offer unique mission capabilities including short transit time crewed cargo transports. Even a commuter shuttle service similar to that portrayed in 2001 appears possible, allowing 1-way trip times to and from the Moon as short as 24 hours. The performance of LTVs using both RL10B-2 chemical rockets, and a variant of the nuclear thermal rocket (NTR), the LO2-Augmented NTR (LANTR), are examined and compared. The bipropellant LANTR engine utilizes its divergent nozzle section as an afterburner into which oxygen is injected and supersonically combusted with reactor-heated hydrogen emerging from the engines sonic throat. If only 1% of the LDP obtained from icy regolith, volcanic glass, and SWI volatile deposits were available for use in lunar orbit, such a supply could support routine commuter flights to the Moon for many thousands of years! This paper provides a look ahead at what might be possible in the not too distant future, quantifies the operational characteristics of key in-space and surface technologies and systems, and provides conceptual designs for the various architectural elements discussed
The Benefits of Nuclear Thermal Propulsion (NTP) in an Evolvable Mars Campaign
NTR: High thrust high specific impulse (2 x LOXLH2chemical) engine uses high power density fission reactor with enriched uranium fuel as thermal power source. Reactor heat is removed using H2propellant which is then exhausted to produce thrust. Conventional chemical engine LH2tanks, turbopumps, regenerative nozzles and radiation-cooled shirt extensions used --NTR is next evolutionary step in high performance liquid rocket engines During the Rover program, a common fuel element tie tube design was developed and used in the design of the 50 klbf Kiwi-B4E (1964), 75 klbf Phoebus-1B (1967), 250 klbf Phoebus-2A (June 1968), then back down to the 25 klbf Pewee engine (Nov-Dec 1968) NASA and DOE are using this same approach: design, build, ground then flight test a small engine using a common fuel element that is scalable to a larger 25 klbf thrust engine needed for human mission
Nuclear Thermal Propulsion (NTP): A Proven Growth Technology for Human NEO/Mars Exploration Missions
The nuclear thermal rocket (NTR) represents the next "evolutionary step" in high performance rocket propulsion. Unlike conventional chemical rockets that produce their energy through combustion, the NTR derives its energy from fission of Uranium-235 atoms contained within fuel elements that comprise the engine s reactor core. Using an "expander" cycle for turbopump drive power, hydrogen propellant is raised to a high pressure and pumped through coolant channels in the fuel elements where it is superheated then expanded out a supersonic nozzle to generate high thrust. By using hydrogen for both the reactor coolant and propellant, the NTR can achieve specific impulse (Isp) values of ~900 seconds (s) or more - twice that of today s best chemical rockets. From 1955 - 1972, twenty rocket reactors were designed, built and ground tested in the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs. These programs demonstrated: (1) high temperature carbide-based nuclear fuels; (2) a wide range of thrust levels; (3) sustained engine operation; (4) accumulated lifetime at full power; and (5) restart capability - all the requirements needed for a human Mars mission. Ceramic metal "cermet" fuel was pursued as well, as a backup option. The NTR also has significant "evolution and growth" capability. Configured as a "bimodal" system, it can generate its own electrical power to support spacecraft operational needs. Adding an oxygen "afterburner" nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, no large technology scale-ups are required for NTP either. In fact, the smallest engine tested during the Rover program - the 25,000 lbf (25 klbf) "Pewee" engine is sufficient when used in a clustered engine arrangement. The "Copernicus" crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth object (NEO) and Mars orbital missions prior to a Mars landing mission. The paper also discusses NASA s current activities and future plans for NTP development that include system-level Technology Demonstrations - specifically ground testing a small, scalable NTR by 2020, with a flight test shortly thereafter
Habitability in Advanced Space Mission Design
Habitability is a fundamental component of any long-duration human habitat. Due to the pressures on the crew and the criticality of their performance, this is particularly true of habitats or vehicles proposed for use in any human space mission of duration over 30 days. This paper, the second of three on this subject, will focus on evaluating all the vehicles currently under consideration for the Mars Design Reference Mission through application of metrics for habitability (proposed in a previous paper, see references Adams/McCurdy 1999)
- …
