

"The Benefits of Nuclear Thermal Propulsion (NTP) in an Evolvable Mars Campaign"

presented by

Stanley K. Borowski (NASA / GRC) David R. McCurdy (Vantage Partners, LLC at GRC)

at the

20th Advanced Space Propulsion Workshop Ohio Aerospace Institute

November 17 - 19, 2014

Glenn Research Center ·

Nuclear Thermal Rocket (NTR) Concept Illustration (Expander Cycle, Dual LH₂ Turbopumps)

NTR: High thrust / high specific impulse (2 x LOX/LH₂ chemical) engine uses high power density fission reactor with enriched uranium fuel as thermal power source. Reactor heat is removed using H₂ propellant which is then exhausted to produce thrust. Conventional chemical engine LH₂ tanks, turbopumps, regenerative nozzles and radiation-cooled shirt extensions used -- *"NTR is next evolutionary step in high performance liquid rocket engines"*

NTP uses high temperature fuel, produces ~560 MWt (for ~25 klb_f engine) but operates for \leq 80 minutes on a round trip mission to Mars (DRA 5.0)

Glenn Research Center

Rover / NERVA* Program Summary

(1959-1972)

The smallest engine tested, the 25 klb_f "Pewee" engine, is sufficient for human Mars missions when used in a clustered arrangement of 3 – 4 engines

- 20 NTR / reactors designed, built and tested at the Nevada Test Site – "All the requirements for a human mission to Mars were demonstrated"
- Engine sizes tested
 - 25, 50, 75 and 250 klb_f
- H₂ exit temperatures achieved
 - 2,350-2,550 K (in 25 klb_f Pewee)
- I_{sp} capability
 - 825-850 sec ("hot bleed cycle" tested on NERVA-XE)
 - 850-875 sec ("expander cycle" chosen for NERVA flight engine)
- Burn duration
 - ~ 62 min (50 klb_f NRX-A6 single burn)
 - ~ 2 hrs (50 klb_f NRX-XE: 27 restarts / accumulated burn time)

* NERVA: Nuclear Engine for Rocket Vehicle Applications

The NERVA Experimental Engine (XE) demonstrated 28 start-up / shut-down cycles during tests in 1969. at Lewis Field

Glenn Research Center

GRC / ORNL Integrated Neutronics, Multi-Physics & Engine Modeling Approach

at Lewis Field

AK RIDGE

Glenn Research Center

Development of a Common Scalable Fuel Element for Ground Testing and Flight Validation

- During the Rover program, a common fuel element / tie tube design was developed and used in the design of the 50 klbf Kiwi-B4E (1964), 75 klbf Phoebus-1B (1967), 250 klbf Phoebus-2A (June 1968), then back down to the 25 klbf Pewee engine (Nov-Dec 1968)
- NASA and DOE are using this same approach: design, build, ground then flight test a small engine using a common fuel element that is scalable to a larger 25 klbf thrust engine needed for human missions

Ref: B. Schnitzler, et al., "Lower Thrust Engine Options Based on the Small Nuclear Rocket Engine

Design", AIAA-2011-5846 paper presented at the 47th Joint Propulsion Conference, San Diego, CA

Glenn Research Center

Fuel Element (FE) – Tie Tube (TT) Arrangements for NERVA-derived NTR Engines

"Sparse" FE – TT Pattern used for Large Engines "SNRE" FE – TT Pattern used in <u>Small Nuclear Rocket Engine</u>

"Dense" FE – Tie Tube Pattern used in Lower Thrust Engines

Each FE has 4 adjacent FEs and 2 adjacent TTs with a FE to TT ratio of ~3 to 1

Each FE has 3 adjacent FEs and 3 adjacent TTs with a FE to TT ratio of ~2 to 1

Each FE has 2 adjacent FEs and 4 adjacent TTs with a FE to TT ratio of ~1 to 1

NOTE: An important feature common to both the Sparse and SNRE FE – TT patterns is that each tie tube is surrounded by and provides mechanical support for 6 fuel elements

Ref: B. Schnitzler, et al., "Lower Thrust Engine Options Based on the Small Nuclear Rocket Engine Design", AIAA-2011-5846

Glenn Research Center

Performance Characteristics for Small & Full Size NERVA-derived Engine Designs – Composite Fuel

Performance Characteristic	7,420-lbf Option	7,420-lbf SNRE <u>Option</u> <u>Baseline</u>		<u>Axial Growth Option</u> <u>Nominal Enhanced</u>		<u>Radial Growth Option</u> <u>Nominal Enhanced</u>	
Engine System		1					
Thrust (klb _f)	7.42	16.4	25.1	25.1	25.1	25.1	
Chamber Inlet Temperature (K)	2736	2695	2790	2940	2731	2807	
Chamber Pressure (psia)	1000	450	1000	1000	1000	1000	
Nozzle Expansion Ratio(NAR)	300:1	100:1	300:1	300:1	300:1	300:1	
Specific Impulse (s)	894	875	906	941	894	913	
Engine Thrust-to-Weight	1.87	2.92	3.50	3.50	3.60	3.60	
Reactor							
Active Fuel Length (cm)	89.0	89.0	132.0	132.0	89.0	89.0	
Effective Core Radius (cm)	14.7	29.5	29.5	29.5	35.2	35.2	
Engine Radius (cm)	43.9	49.3	49.3	49.3	55.0	55.0	
Element Fuel/Tie Tube Pattern Type	Dense	SNRE	SNRE	SNRE	Sparse	Sparse	
Number of Fuel Elements	260	564	564	564	864	864	
Number of Tie Tube Elements	251	241	241	241	283	283	
Fuel Fissile Loading (g U per cm ³)	0.60	0.60	0.25	0.25	0.45	0.45	
Maximum Enrichment (wt% U-235)	93	93	93	93	93	93	
Maximum Fuel Temperature (K)	2860	2860	2860	3010	2860	2930	
Margin to Fuel Melt (K)	40	40	190	40	110	40	
U-235 Mass (kg)	27.5	59.6	36.8	36.8	68.5	68.5	
NOTE: Fuel Matrix Power Density: 3.437 MW _t / liter	"Pewee-clas e Parameter	s″		. ".			

Glenn Research Center

Ref: B. Schnitzler, et al., "Lower Thrust Engine Options Based on the Small Nuclear Rocket Engine Design", AIAA-2011-5846

at Lewis Field

Idaho National Laboratory

Small 7.5 klb_f NTP Engine and Stage for 2025 Lunar Flyby FTD Mission

• IMLEO ~12.72 t

"Heritage" Coated Particle & Composite SNRE FE / TT Arrangement and Engine Performance Parameters

Glenn Research Center

(Ref: S.K. Borowski, et al., AIAA-2013-5465)

The NTPS with In-Line LH₂ Tank Allows Reusable Cargo Delivery and Crewed Missions to the Moon

Glenn Research Center -

Crewed NTR NEA Survey Mission – Reusable Mode

(Ref: S.K. Borowski, et al., AIAA-2012-5144)

"Searcher" and "Search Lite" ASV Options for Reuable and Expendable Missions to "Apophis" in 2028

(Ref: S.K. Borowski, et al., AIAA-2012-5144)

Id NASA

"Copernicus" Crewed NTR Mars Transfer Vehicle (MTV) Configuration Options for DRA 5.0

Glenn Research Center

(Refs: Mars DRA 5.0 Study, NASA-SP-2009-566; Borowski et al., AIAA-2009-5308)

Potential Evolution of Composite Fuel NTRE Size and Performance Levels Supporting the HAT "Evolvable Mars Campaign"

Requirements Missions	Engine Thrust (klb _f)	T/W _{eng}	T _{ex} (°K)	I _{sp} (s)	No. Engines	Fuel Loading (gU/cm ³)	U-235 Mass (kg)	Longest Single burn (min)	Total burn duration (min)	No. burns
Early FTD or Robotic Science	7.4	~1.9	2736	894	1	0.6	27.5	~20.9-22	~- 20.9 - 29.5	1-2
Lunar Cargo	16.7	~3.1	2726	900	3	0.6	60	~21.4	~49.2	5
Lunar Crewed	16.7	~3.1	2726	900	3	0.6	60	~20.9	~55	5
NEA - <i>Apophis</i> Piloted	25	~3.5	2790 - 2940	906-940	3	0.25	36.8	~25 - 37.2	~43.8 - ~77.3	4-5
Mars Cargo	25	~3.5	2790 - 2940	906-940	3	0.25	36.8	~22	~38	2
Mars Piloted	25	~3.5	2790 - 2940	906–940	3	0.25	36.8	~44.5	~79.2	4

• The criticality-limited 7.4 klb_f engine produces ~161 MW_t of thermal power and has maximum fuel temperature of 2860 K

• The 16.7 klb_f SNRE produces ~367 MW_t, and operates at a chamber pressure of ~3.1 MPa (~450 psia) with NAR ~300.1

• The 25 klb, Pewee-class engine produces ~560 MW, of thermal power and has maximum fuel temperature of 3010 K

• Other key performance parameters for the criticality-limited, SNRE & Pewee-class engines provided in NETS-2014 paper

The engine design and mission performance parameters developed thus far provide important data to help guide future non-nuclear / nuclear irradiation testing and fuel down selection process

Glenn Research Center

Ref: S. K. Borowski et al., NETS-2014, Feb. 24-26, 2014

