758 research outputs found
Validity of the WKB Approximation in Calculating the Asymptotic Quasinormal Modes of Black Holes
In this paper, we categorize non-rotating black hole spacetimes based on
their pole structure and in each of these categories we determine whether the
WKB approximation is a valid approximation for calculating the asymptotic
quasinormal modes. We show that Schwarzschild black holes with the Gauss-Bonnet
correction belong to the category in which the WKB approximation is invalid for
calculating these modes. In this context, we further discuss and clarify some
of the ambiguity in the literature surrounding the validity conditions provided
for the WKB approximation.Comment: 10 page
Action Principle and Algebraic Approach to Gauge Transformations in Gauge Theories
The action principle is used to derive, by an entirely algebraic approach,
gauge transformations of the full vacuum-to-vacuum transition amplitude
(generating functional) from the Coulomb gauge to arbitrary covariant gauges
and in turn to the celebrated Fock-Schwinger (FS) gauge for the abelian (QED)
gauge theory without recourse to path integrals or to commutation rules and
without making use of delta functionals. The interest in the FS gauge, in
particular, is that it leads to Faddeev-Popov ghosts-free non-abelian gauge
theories. This method is expected to be applicable to non-abelian gauge
theories including supersymmetric ones.Comment: LaTeX, 12 pages, Corrected typo
Combinatorial Hopf algebras in quantum field theory I
This manuscript stands at the interface between combinatorial Hopf algebra
theory and renormalization theory. Its plan is as follows: Section 1 is the
introduction, and contains as well an elementary invitation to the subject. The
rest of part I, comprising Sections 2-6, is devoted to the basics of Hopf
algebra theory and examples, in ascending level of complexity. Part II turns
around the all-important Faa di Bruno Hopf algebra. Section 7 contains a first,
direct approach to it. Section 8 gives applications of the Faa di Bruno algebra
to quantum field theory and Lagrange reversion. Section 9 rederives the related
Connes-Moscovici algebras. In Part III we turn to the Connes-Kreimer Hopf
algebras of Feynman graphs and, more generally, to incidence bialgebras. In
Section10 we describe the first. Then in Section11 we give a simple derivation
of (the properly combinatorial part of) Zimmermann's cancellation-free method,
in its original diagrammatic form. In Section 12 general incidence algebras are
introduced, and the Faa di Bruno bialgebras are described as incidence
bialgebras. In Section 13, deeper lore on Rota's incidence algebras allows us
to reinterpret Connes-Kreimer algebras in terms of distributive lattices. Next,
the general algebraic-combinatorial proof of the cancellation-free formula for
antipodes is ascertained; this is the heart of the paper. The structure results
for commutative Hopf algebras are found in Sections 14 and 15. An outlook
section very briefly reviews the coalgebraic aspects of quantization and the
Rota-Baxter map in renormalization.Comment: 94 pages, LaTeX figures, precisions made, typos corrected, more
references adde
A theorem on the photographic process in Special Relativity. The train paradox revisited
The purpose of this letter is to show, on the one hand, how the so-called
train paradox could be resolved directly without appealing to non-linear
Lorentz transformations. The resolution is established in the most general case
of curvilinear motion with a variable speed train. On the other hand, we
formulate a theorem on the photographic process of two moving objects with
relativistic effects.Comment: 7 pages, 1 figur
Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA)
Background: In this study we aimed to evaluate the role of a SNP in intron 1 of the ERCC4 gene (rs744154), previously reported to be associated with a reduced risk of breast cancer in the general population, as a breast cancer risk modifier in BRCA1 and BRCA2 mutation carriers. Methods: We have genotyped rs744154 in 9408 BRCA1 and 5632 BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and assessed its association with breast cancer risk using a retrospective weighted cohort approach. Results: We found no evidence of association with breast cancer risk for BRCA1 (per-allele HR: 0.98, 95% CI: 0.93–1.04, P=0.5) or BRCA2 (per-allele HR: 0.97, 95% CI: 0.89–1.06, P=0.5) mutation carriers. Conclusion: This SNP is not a significant modifier of breast cancer risk for mutation carriers, though weak associations cannot be ruled out. A Osorio1, R L Milne2, G Pita3, P Peterlongo4,5, T Heikkinen6, J Simard7, G Chenevix-Trench8, A B Spurdle8, J Beesley8, X Chen8, S Healey8, KConFab9, S L Neuhausen10, Y C Ding10, F J Couch11,12, X Wang11, N Lindor13, S Manoukian4, M Barile14, A Viel15, L Tizzoni5,16, C I Szabo17, L Foretova18, M Zikan19, K Claes20, M H Greene21, P Mai21, G Rennert22, F Lejbkowicz22, O Barnett-Griness22, I L Andrulis23,24, H Ozcelik24, N Weerasooriya23, OCGN23, A-M Gerdes25, M Thomassen25, D G Cruger26, M A Caligo27, E Friedman28,29, B Kaufman28,29, Y Laitman28, S Cohen28, T Kontorovich28, R Gershoni-Baruch30, E Dagan31,32, H Jernström33, M S Askmalm34, B Arver35, B Malmer36, SWE-BRCA37, S M Domchek38, K L Nathanson38, J Brunet39, T Ramón y Cajal40, D Yannoukakos41, U Hamann42, HEBON37, F B L Hogervorst43, S Verhoef43, EB Gómez García44,45, J T Wijnen46,47, A van den Ouweland48, EMBRACE37, D F Easton49, S Peock49, M Cook49, C T Oliver49, D Frost49, C Luccarini50, D G Evans51, F Lalloo51, R Eeles52, G Pichert53, J Cook54, S Hodgson55, P J Morrison56, F Douglas57, A K Godwin58, GEMO59,60,61, O M Sinilnikova59,60, L Barjhoux59,60, D Stoppa-Lyonnet61, V Moncoutier61, S Giraud59, C Cassini62,63, L Olivier-Faivre62,63, F Révillion64, J-P Peyrat64, D Muller65, J-P Fricker65, H T Lynch66, E M John67, S Buys68, M Daly69, J L Hopper70, M B Terry71, A Miron72, Y Yassin72, D Goldgar73, Breast Cancer Family Registry37, C F Singer74, D Gschwantler-Kaulich74, G Pfeiler74, A-C Spiess74, Thomas v O Hansen75, O T Johannsson76, T Kirchhoff77, K Offit77, K Kosarin77, M Piedmonte78, G C Rodriguez79, K Wakeley80, J F Boggess81, J Basil82, P E Schwartz83, S V Blank84, A E Toland85, M Montagna86, C Casella87, E N Imyanitov88, A Allavena89, R K Schmutzler90, B Versmold90, C Engel91, A Meindl92, N Ditsch93, N Arnold94, D Niederacher95, H Deißler96, B Fiebig97, R Varon-Mateeva98, D Schaefer99, U G Froster100, T Caldes101, M de la Hoya101, L McGuffog49, A C Antoniou49, H Nevanlinna6, P Radice4,5 and J Benítez1,3 on behalf of CIMB
Recommended from our members
Rapid progression of prostate cancer in men with a BRCA2 mutation.
Men with BRCA2 mutations have been found to be at increased risk of developing prostate cancer. There is a recent report that BRCA2 carriers with prostate cancer have poorer survival than noncarrier prostate cancer patients. In this study, we compared survival of men with a BRCA2 mutation and prostate cancer with that of men with a BRCA1 mutation and prostate cancer. We obtained the age at diagnosis, age at death or current age from 182 men with prostate cancer from families with a BRCA2 mutation and from 119 men with prostate cancer from families with a BRCA1 mutation. The median survival from diagnosis was 4.0 years for men with a BRCA2 mutation vs 8.0 years for men with a BRCA1 mutation, and the difference was highly significant (P<0.01). It may be important to develop targeted chemotherapies to treat prostate cancer in men with a BRCA2 mutation
BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers
Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers.
Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided.
Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed.
Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations
Glycogen synthase kinase 3, circadian rhythms, and bipolar disorder: a molecular link in the therapeutic action of lithium
BACKGROUND: Bipolar disorder (BPD) is a widespread condition characterized by recurring states of mania and depression. Lithium, a direct inhibitor of glycogen synthase kinase 3 (GSK3) activity, and a mainstay in BPD therapeutics, has been proposed to target GSK3 as a mechanism of mood stabilization. In addition to mood imbalances, patients with BPD often suffer from circadian disturbances. GSK3, an essential kinase with widespread roles in development, cell survival, and metabolism has been demonstrated to be an essential component of the Drosophila circadian clock. We sought to investigate the role of GSK3 in the mammalian clock mechanism, as a possible mediator of lithium's therapeutic effects. METHODS: GSK3 activity was decreased in mouse embryonic fibroblasts (MEFs) genetically and pharmacologically, and changes in the cyclical expression of core clock genes – mPer2 in particular – were examined. RESULTS: We demonstrate that genetic depletion of GSK3 in synchronized oscillating MEFs results in a significant delay in the periodicity of the endogenous clock mechanism, particularly in the cycling period of mPer2. Furthermore, we demonstrate that pharmacological inhibition of GSK3 activity by kenpaullone, a known antagonist of GSK3 activity, as well as by lithium, a direct inhibitor of GSK3 and the most common treatment for BPD, induces a phase delay in mPer2 transcription that resembles the effect observed with GSK3 knockdown. CONCLUSION: These results confirm GSK3 as a plausible target of lithium action in BPD therapeutics, and suggest the circadian clock mechanism as a significant modulator of lithium's clinical benefits
Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women
Background: Most BRCA1 or BRCA2 mutation carriers have inherited a single (heterozygous) mutation. Transheterozygotes (TH) who have inherited deleterious mutations in both BRCA1 and BRCA2 are rare, and the consequences of transheterozygosity are poorly understood. Methods: From 32,295 female BRCA1/2 mutation carriers, we identified 93 TH (0.3 %). "Cases" were defined as TH, and "controls" were single mutations at BRCA1 (SH1) or BRCA2 (SH2). Matched SH1 "controls" carried a BRCA1 mutation found in the TH "case". Matched SH2 "controls" carried a BRCA2 mutation found in the TH "case". After matching the TH carriers with SH1 or SH2, 91 TH were matched to 9316 SH1, and 89 TH were matched to 3370 SH2. Results: The majority of TH (45.2 %) involved the three common Jewish mutations. TH were more likely than SH1 and SH2 women to have been ever diagnosed with breast cancer (BC; p = 0.002). TH were more likely to be diagnosed with ovarian cancer (OC) than SH2 (p = 0.017), but not SH1. Age at BC diagnosis was the same in TH vs. SH1 (p = 0.231), but was on average 4.5 years younger in TH than in SH2 (p < 0.001). BC in TH was more likely to be estrogen receptor (ER) positive (p = 0.010) or progesterone receptor (PR) positive (p = 0.013) than in SH1, but less likely to be ER positive (p < 0.001) or PR positive (p = 0.012) than SH2. Among 15 tumors from TH patients, there was no clear pattern of loss of heterozygosity (LOH) for BRCA1 or BRCA2 in either BC or OC. Conclusions: Our observations suggest that clinical TH phenotypes resemble SH1. However, TH breast tumor marker characteristics are phenotypically intermediate to SH1 and SH2
Refined histopathological predictors of BRCA1 and BRCA2 mutation status: A large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia
Introduction: The distribution of histopathological features of invasive breast tumors in BRCA1 or BRCA2 germline mutation carriers differs from that of individuals with no known mutation. Histopathological features thus have utility for mutation prediction, including statistical modeling to assess pathogenicity of BRCA1 or BRCA2 variants of uncertain clinical significance. We analyzed large pathology datasets accrued by the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and the Breast Cancer Association Consortium (BCAC) to reassess histopathological predictors of BRCA1 and BRCA2 mutation status, and provide robust likelihood ratio (LR) estimates for statistical modeling. Methods: Selection criteria for study/center inclusion were estrogen receptor (ER) status or grade data available for invasive breast cancer diagnosed younger than 70 years. The dataset included 4,477 BRCA1 mutation carriers, 2,565 BRCA2 mutation carriers, and 47,565 BCAC breast cancer cases. Country-stratified estimates of the
- …
