72 research outputs found

    Nanostructured tic layer is highly suitable surface for adhesion, proliferation and spreading of cells

    Get PDF
    Cell culture is usually performed in 2D polymer surfaces; however, several studies are conducted with the aim to screen functional coating molecules to find substrates more suitable for cell adhesion and proliferation. The aim of this manuscript is to compare the cell adhesion and cytoskeleton organization of different cell types on different surfaces. Human primary fibroblasts, chondrocytes and osteoblasts isolated from patients undergoing surgery were seeded on polystyrene, poly-d-lysine-coated glass and titanium carbide slides and left to grow for several days. Then their cytoskeleton was analyzed, both by staining cells with phalloidin, which highlights actin fibers, and using Atomic Force Microscopy. We also monitored the production of Fibroblast Growth Factor-2, Bone Morphogenetic Protein-2 and Osteocalcin, using ELISA, and we highlighted production of Collagen type I in fibroblasts and osteoblasts and Collagen type II in chondrocytes by immunofluorescences. Fibroblasts, chondrocytes and osteoblasts showed both an improved proliferative activity and a good adhesion ability when cultured on titanium carbide slides, compared to polystyrene and poly-d-lysine-coated glass. In conclusion, we propose titanium carbide as a suitable surface to cultivate cells such as fibroblasts, chondrocytes and osteoblasts, allowing the preservation of their differentiated state and good adhesion properties

    Feeding synthetic zeolite to transition dairy cows alters neutrophil gene expression.

    Get PDF
    Synthetic zeolites are used to control the availability of dietary minerals (e.g., Ca, Mg, and P) in dairy cows. Due to calcium demand increasing with lactation onset, most cows become hypocalcemic immediately postpartum, which likely contributes to poorer immune function because calcium is important for immune cell signaling. To overcome postpartum hypocalcemia, we fed transition cows synthetic zeolite A (sodium aluminosilicate) precalving and hypothesized that it would alter calcium and thus neutrophil function during the transition period. Multiparous Holstein-Friesian cows in late gestation were randomly allocated to an untreated control group (n = 10) or a treatment group in which each cow received 500 g of zeolite A daily (n = 10) for 14 d prior to the expected calving date (actual duration = 17 ± 3 d prepartum). The cows grazed pasture, and each was supplemented with 2 kg/d of maize silage (dry matter basis), with or without zeolite, until calving. Blood samples for neutrophil isolation and analysis of plasma indicators of mineral status, energy status, liver function, and inflammation were collected pretreatment (covariate; d -19); on d -14 and -7 precalving; on the day of calving (d 0); and on d 1, 4, 7, and 28 postcalving. Neutrophils were isolated and gene expression was analyzed using microfluidic gene expression arrays. Neutrophil respiratory burst was assessed using stimulation with phorbol 12-myristate 13-acetate and flow cytometry. Plasma calcium and phosphorus revealed a treatment by time interaction; cows offered zeolite had greater plasma calcium concentrations at d 0, 1, and 4 postcalving and plasma phosphorus concentrations were lower in zeolite-treated cows during the precalving period until d 1 postcalving compared with control animals. Zeolite treatment downregulated neutrophil gene expression of CXCR4 and S100A8 and tended to lower gene expression for other immune mediators (CXCR1, IFNG, S100A12, and S100A9) compared with the control. Zeolite treatment did not affect neutrophil respiratory burst or expression of the other genes investigated. Plasma concentrations of cytokine IL-6 were reduced with zeolite treatment, which was most evident immediately postcalving (d 0, 1, and 7). Overall, feeding zeolite precalving had few effects on neutrophil gene expression and function; however, the lower gene expression of neutrophil inflammatory mediators may be due to altered availability of dietary minerals prepartum and indicates that zeolite A may control inflammation during the transition period

    Molecular networks of insulin signaling and amino acid metabolism in subcutaneous adipose tissue are altered by body condition in periparturient Holstein cows

    Full text link
    [EN] Peripartal cows mobilize not only body fat but also body protein to satisfy their energy requirements. The objective of this study was to determine the effect of prepartum BCS on blood biomarkers related to energy and nitrogen metabolism, and mRNA and protein abundance associated with AA metabolism and insulin signaling in subcutaneous adipose tissue (SAT) in peripartal cows. Twenty-two multiparous Holstein cows were retrospectively classified into a high BCS (HBCS; n = 11, BCS >= 3.5) or normal BCS (NBCS; n = 11, BCS <= 3.17) group at d 28 before expected parturition. Cows were fed the same diet as a total mixed ration before parturition and were fed the same lactation diet postpartum. Blood samples collected at -10, 7, 15, and 30 d relative to parturition were used for analyses of biomarkers associated with energy and nitrogen metabolism. Biopsies of SAT harvested at -15, 7, and 30 d relative to parturition were used for mRNA (real timePCR) and protein abundance (Western blotting) assays. Data were subjected to ANOVA using the MIXED procedure of SAS (v. 9.4; SAS institute Inc., Cary, NC), with P <= 0.05 being the threshold for significance. Cows in HBCS had greater overall plasma nonesterified fatty acid concentrations, due to marked increases at 7 and 15 d postpartum. This response was similar (BCS x Day effect) to protein abundance of phosphorylated (p) protein kinase B (p-AKT), the insulin-induced glucose transporter (SLC2A4), and the sodium-coupled neutral AA transporter (SLC38A1). Abundance of these proteins was lower at -15 d compared with NBCS cows, and either increased (SLC2A4, SLC38A1) or did not change (p-AKT) at 7 d postpartum in IIBCS. Unlike protein abundance, however, overall mRNA abundances of the high-affinity cationic (SLC7A1), proton-coupled (SLC96A1), and sodium-coupled amino acid transporters (SLC,98,42) were greater in IIBCS than NBCS cows, due to upregulation in the postpartum phase. Those responses were similar to protein abundance of p-mTOR, which increased (BCS x Day effect) at 7 d in HBCS compared with NBCS cows. mRNA abundance of argininosuccinate lyase (ASL) and arginase 1 (ARG1) also was greater overall in HBCS cows. Together, these responses suggested impaired insulin signaling, coupled with greater postpartum AA transport rate and urea cycle activity in SAT of HBCS cows. An in vitro study using adipocyte and macrophage cocultures stimulated with various concentrations of fatty acids could provide some insights into the role of immune cells in modulating adipose tissue immunometabolic status, including insulin resistance and AA metabolism.Y. Liang is a recipient of a doctoral fellowship from the China Scholarship Council (CSC, Beijing, China) to perform his PhD studies at the University of Illinois (Urbana). A. S. Alharthi received a fellowship from King Saud University (Riyadh, Saudi Arabia) to perform his PhD studies at the University of Illinois (Urbana). A. A. Elolimy was recipient of a fellowship from the Higher Education Ministry (Cairo, Egypt) to perform his PhD studies at the University of Illinois (Urbana). We thank Perdue AgriBusiness (Salisbury, MD) for the donation of ProvAAL2 AADvantage during the course of the experiment. The authors declare no conflicts of interest.Liang, Y.; Alharthi, A.; Elolimy, A.; Bucktrout, R.; Lopreiato, V.; Cortes, I.; Xu, C.... (2020). Molecular networks of insulin signaling and amino acid metabolism in subcutaneous adipose tissue are altered by body condition in periparturient Holstein cows. Journal of Dairy Science. 103(11):10459-10476. https://doi.org/10.3168/jds.2020-18612S104591047610311Akter, S. H., Häussler, S., Germeroth, D., von Soosten, D., Dänicke, S., Südekum, K.-H., & Sauerwein, H. (2012). Immunohistochemical characterization of phagocytic immune cell infiltration into different adipose tissue depots of dairy cows during early lactation. Journal of Dairy Science, 95(6), 3032-3044. doi:10.3168/jds.2011-4856Alharthi, A., Zhou, Z., Lopreiato, V., Trevisi, E., & Loor, J. J. (2018). Body condition score prior to parturition is associated with plasma and adipose tissue biomarkers of lipid metabolism and inflammation in Holstein cows. Journal of Animal Science and Biotechnology, 9(1). doi:10.1186/s40104-017-0221-1Appuhamy, J. A. D. R. N., Knoebel, N. A., Nayananjalie, W. A. D., Escobar, J., & Hanigan, M. D. (2012). Isoleucine and Leucine Independently Regulate mTOR Signaling and Protein Synthesis in MAC-T Cells and Bovine Mammary Tissue Slices. The Journal of Nutrition, 142(3), 484-491. doi:10.3945/jn.111.152595Arriarán, S., Agnelli, S., Remesar, X., Fernández-López, J.-A., & Alemany, M. (2015). The urea cycle of rat white adipose tissue. RSC Advances, 5(113), 93403-93414. doi:10.1039/c5ra16398fBatistel, F., Arroyo, J. M., Bellingeri, A., Wang, L., Saremi, B., Parys, C., … Loor, J. J. (2017). Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 100(9), 7455-7467. doi:10.3168/jds.2017-12689Batistel, F., Arroyo, J. M., Garces, C. I. M., Trevisi, E., Parys, C., Ballou, M. A., … Loor, J. J. (2018). Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 101(1), 480-490. doi:10.3168/jds.2017-13185Bauchart-Thevret, C., Cui, L., Wu, G., & Burrin, D. G. (2010). Arginine-induced stimulation of protein synthesis and survival in IPEC-J2 cells is mediated by mTOR but not nitric oxide. American Journal of Physiology-Endocrinology and Metabolism, 299(6), E899-E909. doi:10.1152/ajpendo.00068.2010Bewley, J. M., & Schutz, M. M. (2008). An Interdisciplinary Review of Body Condition Scoring for Dairy Cattle. The Professional Animal Scientist, 24(6), 507-529. doi:10.15232/s1080-7446(15)30901-3Bionaz, M., Chen, S., Khan, M. J., & Loor, J. J. (2013). Functional Role of PPARs in Ruminants: Potential Targets for Fine-Tuning Metabolism during Growth and Lactation. PPAR Research, 2013, 1-28. doi:10.1155/2013/684159Bionaz, M., Trevisi, E., Calamari, L., Librandi, F., Ferrari, A., & Bertoni, G. (2007). Plasma Paraoxonase, Health, Inflammatory Conditions, and Liver Function in Transition Dairy Cows. Journal of Dairy Science, 90(4), 1740-1750. doi:10.3168/jds.2006-445Burgos, S. A., Dai, M., & Cant, J. P. (2010). Nutrient availability and lactogenic hormones regulate mammary protein synthesis through the mammalian target of rapamycin signaling pathway. Journal of Dairy Science, 93(1), 153-161. doi:10.3168/jds.2009-2444Busato, A., Faissler, D., Kupfer, U., & Blum, J. W. (2002). Body Condition Scores in Dairy Cows: Associations with Metabolic and Endocrine Changes in Healthy Dairy Cows. Journal of Veterinary Medicine Series A, 49(9), 455-460. doi:10.1046/j.1439-0442.2002.00476.xCai, H., Dong, L. Q., & Liu, F. (2016). Recent Advances in Adipose mTOR Signaling and Function: Therapeutic Prospects. Trends in Pharmacological Sciences, 37(4), 303-317. doi:10.1016/j.tips.2015.11.011Caroprese, M., Albenzio, M., Marino, R., Santillo, A., & Sevi, A. (2012). Immune response and milk production of dairy cows fed graded levels of rumen-protected glutamine. Research in Veterinary Science, 93(1), 202-209. doi:10.1016/j.rvsc.2011.07.015Closs, E. I., Boissel, J.-P., Habermeier, A., & Rotmann, A. (2006). Structure and Function of Cationic Amino Acid Transporters (CATs). Journal of Membrane Biology, 213(2), 67-77. doi:10.1007/s00232-006-0875-7Contreras, G. A., Kabara, E., Brester, J., Neuder, L., & Kiupel, M. (2015). Macrophage infiltration in the omental and subcutaneous adipose tissues of dairy cows with displaced abomasum. Journal of Dairy Science, 98(9), 6176-6187. doi:10.3168/jds.2015-9370Cynober, L., Boucher, J. L., & Vasson, M.-P. (1995). Arginine metabolism in mammals. The Journal of Nutritional Biochemistry, 6(8), 402-413. doi:10.1016/0955-2863(95)00066-9Dann, H. M., Morin, D. E., Bollero, G. A., Murphy, M. R., & Drackley, J. K. (2005). Prepartum Intake, Postpartum Induction of Ketosis, and Periparturient Disorders Affect the Metabolic Status of Dairy Cows. Journal of Dairy Science, 88(9), 3249-3264. doi:10.3168/jds.s0022-0302(05)73008-3De Koster, J., Hostens, M., Van Eetvelde, M., Hermans, K., Moerman, S., Bogaert, H., … Opsomer, G. (2015). Insulin response of the glucose and fatty acid metabolism in dry dairy cows across a range of body condition scores. Journal of Dairy Science, 98(7), 4580-4592. doi:10.3168/jds.2015-9341De Koster, J., Strieder-Barboza, C., de Souza, J., Lock, A. L., & Contreras, G. A. (2018). Short communication: Effects of body fat mobilization on macrophage infiltration in adipose tissue of early lactation dairy cows. Journal of Dairy Science, 101(8), 7608-7613. doi:10.3168/jds.2017-14318De Koster, J., Urh, C., Hostens, M., Van den Broeck, W., Sauerwein, H., & Opsomer, G. (2017). Relationship between serum adiponectin concentration, body condition score, and peripheral tissue insulin response of dairy cows during the dry period. Domestic Animal Endocrinology, 59, 100-104. doi:10.1016/j.domaniend.2016.12.004De Koster, J., Van den Broeck, W., Hulpio, L., Claeys, E., Van Eetvelde, M., Hermans, K., … Opsomer, G. (2016). Influence of adipocyte size and adipose depot on the in vitro lipolytic activity and insulin sensitivity of adipose tissue in dairy cows at the end of the dry period. Journal of Dairy Science, 99(3), 2319-2328. doi:10.3168/jds.2015-10440Depreester, E., De Koster, J., Van Poucke, M., Hostens, M., Van den Broeck, W., Peelman, L., … Opsomer, G. (2018). Influence of adipocyte size and adipose depot on the number of adipose tissue macrophages and the expression of adipokines in dairy cows at the end of pregnancy. Journal of Dairy Science, 101(7), 6542-6555. doi:10.3168/jds.2017-13777Durante, W. (2013). Role of Arginase in Vessel Wall Remodeling. Frontiers in Immunology, 4. doi:10.3389/fimmu.2013.00111Edmonson, A. J., Lean, I. J., Weaver, L. D., Farver, T., & Webster, G. (1989). A Body Condition Scoring Chart for Holstein Dairy Cows. Journal of Dairy Science, 72(1), 68-78. doi:10.3168/jds.s0022-0302(89)79081-0Frayn, K. N., Khan, K., Coppack, S. W., & Elia, M. (1991). Amino acid metabolism in human subcutaneous adipose tissue in vivo. Clinical Science, 80(5), 471-474. doi:10.1042/cs0800471Ghaffari, M. H., Sadri, H., Schuh, K., Dusel, G., Frieten, D., Koch, C., … Sauerwein, H. (2019). Biogenic amines: Concentrations in serum and skeletal muscle from late pregnancy until early lactation in dairy cows with high versus normal body condition score. Journal of Dairy Science, 102(7), 6571-6586. doi:10.3168/jds.2018-16034Ghaffari, M. H., Schuh, K., Dusel, G., Frieten, D., Koch, C., Prehn, C., … Sadri, H. (2019). Mammalian target of rapamycin signaling and ubiquitin-proteasome–related gene expression in skeletal muscle of dairy cows with high or normal body condition score around calving. Journal of Dairy Science, 102(12), 11544-11560. doi:10.3168/jds.2019-17130Ghaffari, M. H., Jahanbekam, A., Sadri, H., Schuh, K., Dusel, G., Prehn, C., … Sauerwein, H. (2019). Metabolomics meets machine learning: Longitudinal metabolite profiling in serum of normal versus overconditioned cows and pathway analysis. Journal of Dairy Science, 102(12), 11561-11585. doi:10.3168/jds.2019-17114Gonzalez, E., & McGraw, T. E. (2009). Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling. Proceedings of the National Academy of Sciences, 106(17), 7004-7009. doi:10.1073/pnas.0901933106González, F. D., Muiño, R., Pereira, V., Campos, R., & Benedito, J. L. (2011). Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows. Journal of Veterinary Science, 12(3), 251. doi:10.4142/jvs.2011.12.3.251Häussler, S., Germeroth, D., Laubenthal, L., Ruda, L. F., Rehage, J., Dänicke, S., & Sauerwein, H. (2017). Short Communication: Immunohistochemical localization of the immune cell marker CD68 in bovine adipose tissue: impact of tissue alterations and excessive fat accumulation in dairy cows. Veterinary Immunology and Immunopathology, 183, 45-48. doi:10.1016/j.vetimm.2016.12.005Horie, T., Fukasawa, K., Iezaki, T., Park, G., Onishi, Y., Ozaki, K., … Hinoi, E. (2017). Hypoxic Stress Upregulates the Expression of Slc38a1 in Brown Adipocytes via Hypoxia-Inducible Factor-1α. Pharmacology, 101(1-2), 64-71. doi:10.1159/000480405Hosogai, N., Fukuhara, A., Oshima, K., Miyata, Y., Tanaka, S., Segawa, K., … Shimomura, I. (2007). Adipose Tissue Hypoxia in Obesity and Its Impact on Adipocytokine Dysregulation. Diabetes, 56(4), 901-911. doi:10.2337/db06-0911Hu, H., Moon, J., Chung, J. H., Kim, O. Y., Yu, R., & Shin, M.-J. (2015). Arginase inhibition ameliorates adipose tissue inflammation in mice with diet-induced obesity. Biochemical and Biophysical Research Communications, 464(3), 840-847. doi:10.1016/j.bbrc.2015.07.048Ibrahim, M. M. (2010). Subcutaneous and visceral adipose tissue: structural and functional differences. Obesity Reviews, 11(1), 11-18. doi:10.1111/j.1467-789x.2009.00623.xJafari, A., Emmanuel, D. G. V., Christopherson, R. J., Thompson, J. R., Murdoch, G. K., Woodward, J., … Ametaj, B. N. (2006). Parenteral Administration of Glutamine Modulates Acute Phase Response in Postparturient Dairy Cows. Journal of Dairy Science, 89(12), 4660-4668. doi:10.3168/jds.s0022-0302(06)72516-4Jager, J., Grémeaux, T., Cormont, M., Le Marchand-Brustel, Y., & Tanti, J.-F. (2007). Interleukin-1β-Induced Insulin Resistance in Adipocytes through Down-Regulation of Insulin Receptor Substrate-1 Expression. Endocrinology, 148(1), 241-251. doi:10.1210/en.2006-0692Jamali Emam Gheise, N., Riasi, A., Zare Shahneh, A., Celi, P., & Ghoreishi, S. M. (2017). Effect of pre-calving body condition score and previous lactation on BCS change, blood metabolites, oxidative stress and milk production in Holstein dairy cows. Italian Journal of Animal Science, 16(3), 474-483. doi:10.1080/1828051x.2017.1290507Janovick, N. A., Boisclair, Y. R., & Drackley, J. K. (2011). Prepartum dietary energy intake affects metabolism and health during the periparturient period in primiparous and multiparous Holstein cows. Journal of Dairy Science, 94(3), 1385-1400. doi:10.3168/jds.2010-3303Javed, K., & Fairweather, S. J. (2019). Amino acid transporters in the regulation of insulin secretion and signalling. Biochemical Society Transactions, 47(2), 571-590. doi:10.1042/bst20180250Ji, P., Drackley, J. K., Khan, M. J., & Loor, J. J. (2014). Inflammation- and lipid metabolism-related gene network expression in visceral and subcutaneous adipose depots of Holstein cows. Journal of Dairy Science, 97(6), 3441-3448. doi:10.3168/jds.2013-7296Ji, P., Drackley, J. K., Khan, M. J., & Loor, J. J. (2014). Overfeeding energy upregulates peroxisome proliferator-activated receptor (PPAR)γ-controlled adipogenic and lipolytic gene networks but does not affect proinflammatory markers in visceral and subcutaneous adipose depots of Holstein cows. Journal of Dairy Science, 97(6), 3431-3440. doi:10.3168/jds.2013-7295Ji, P., Osorio, J. S., Drackley, J. K., & Loor, J. J. (2012). Overfeeding a moderate energy diet prepartum does not impair bovine subcutaneous adipose tissue insulin signal transduction and induces marked changes in peripartal gene network expression. Journal of Dairy Science, 95(8), 4333-4351. doi:10.3168/jds.2011-5079Kanda, H. (2006). MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. Journal of Clinical Investigation, 116(6), 1494-1505. doi:10.1172/jci26498Kenéz, Á., Ruda, L., Dänicke, S., & Huber, K. (2019). Insulin signaling and insulin response in subcutaneous and retroperitoneal adipose tissue in Holstein cows during the periparturient period. Journal of Dairy Science, 102(12), 11718-11729. doi:10.3168/jds.2019-16873Laplante, M., & Sabatini, D. M. (2009). mTOR signaling at a glance. Journal of Cell Science, 122(20), 3589-3594. doi:10.1242/jcs.051011Laubenthal, L., Ruda, L., Sultana, N., Winkler, J., Rehage, J., Meyer, U., … Häussler, S. (2017). Effect of increasing body condition on oxidative stress and mitochondrial biogenesis in subcutaneous adipose tissue depot of nonlactating dairy cows. Journal of Dairy Science, 100(6), 4976-4986. doi:10.3168/jds.2016-12356Le Floc’h, N., Melchior, D., & Obled, C. (2004). Modifications of protein and amino acid metabolism during inflammation and immune system activation. Livestock Production Science, 87(1), 37-45. doi:10.1016/j.livprodsci.2003.09.005Li, Y., Wei, H., Li, F., Chen, S., Duan, Y., Guo, Q., … Yin, Y. (2016). Supplementation of branched-chain amino acids in protein-restricted diets modulates the expression levels of amino acid transporters and energy metabolism associated regulators in the adipose tissue of growing pigs. Animal Nutrition, 2(1), 24-32. doi:10.1016/j.aninu.2016.01.003Liang, Y., Alharthi, A. S., Bucktrout, R., Elolimy, A. A., Lopreiato, V., Martinez-Cortés, I., … Loor, J. J. (2020). Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)–related antioxidant network abundance in subcutaneous adipose tissue of periparturient Holstein cows. Journal of Dairy Science, 103(7), 6439-6453. doi:10.3168/jds.2019-17813Liang, Y., Batistel, F., Parys, C., & Loor, J. J. (2019). Methionine supply during the periparturient period enhances insulin signaling, amino acid transporters, and mechanistic target of rapamycin pathway proteins in adipose tissue of Holstein cows. Journal of Dairy Science, 102(5), 4403-4414. doi:10.3168/jds.2018-15738Liao, W., Nguyen, M. T. A., Yoshizaki, T., Favelyukis, S., Patsouris, D., Imamura, T., … Olefsky, J. M. (2007). Suppression of PPAR-γ attenuates insulin-stimulated glucose uptake by affecting both GLUT1 and GLUT4 in 3T3-L1 adipocytes. American Journal of Physiology-Endocrinology and Metabolism, 293(1), E219-E227. doi:10.1152/ajpendo.00695.2006Locher, L. F., Meyer, N., Weber, E.-M., Rehage, J., Meyer, U., Dänicke, S., & Huber, K. (2011). Hormone-sensitive lipase protein expression and extent of phosphorylation in subcutaneous and retroperitoneal adipose tissues in the periparturient dairy cow. Journal of Dairy Science, 94(9), 4514-4523. doi:10.3168/jds.2011-4145Ma, Y. F., Zhao, L., Coleman, D. N., Gao, M., & Loor, J. J. (2019). Tea polyphenols protect bovine mammary epithelial cells from hydrogen peroxide-induced oxidative damage in vitro by activating NFE2L2/HMOX1 pathways. Journal of Dairy Science, 102(2), 1658-1670. doi:10.3168/jds.2018-15047Mackenzie, B., & Erickson, J. D. (2004). Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pfl�gers Archiv European Journal of Physiology, 447(5), 784-795. doi:10.1007/s00424-003-1117-9Mann, S., Nydam, D. V., Abuelo, A., Leal Yepes, F. A., Overton, T. R., & Wakshlag, J. J. (2016). Insulin signaling, inflammation, and lipolysis in subcutaneous adipose tissue of transition dairy cows either overfed energy during the prepartum period or fed a controlled-energy diet. Journal of Dairy Science, 99(8), 6737-6752. doi:10.3168/jds.2016-10969Megahed, A. A., Hiew, M. W. H., Ragland, D., & Constable, P. D. (2019). Changes in skeletal muscle thickness and echogenicity and plasma creatinine concentration as indicators of protein and intramuscular fat mobilization in periparturient dairy cows. Journal of Dairy Science, 102(6), 5550-5565. doi:10.3168/jds.2018-15063Menchini, R. J., & Chaudhry, F. A. (2019). Multifaceted regulation of the system A transporter Slc38a2 suggests nanoscale regulation of amino acid metabolism and cellular signaling. Neuropharmacology, 161, 107789. doi:10.1016/j.neuropharm.2019.107789Minuti, A., Bionaz, M., Lopreiato, V., Janovick, N. A., Rodriguez-Zas, S. L., Drackley, J. K., & Loor, J. J. (2020). Prepartum dietary energy intake alters adipose tissue transcriptome profiles during the periparturient period in Holstein dairy cows. Journal of Animal Science and Biotechnology, 11(1). doi:10.1186/s40104-019-0409-7Moisá, S. J., Ji, P., Drackley, J. K., Rodriguez-Zas, S. L., & Loor, J. J. (2017). Transcriptional changes in mesenteric and subcutaneous adipose tissue from Holstein cows in response to plane of dietary energy. Journal of Animal Science and Biotechnology, 8(1). doi:10.1186/s40104-017-0215-zMoyes, K. M., Drackley, J. K., Morin, D. E., & Loor, J. J. (2010). Greater expression of TLR2, TLR4, and IL6 due to negative energy balance is associated with lower expression of HLA-DRA and HLA-A in bovine blood neutrophils after intramammary mastitis challenge with Streptococcus uberis. Functional & Integrative Genomics, 10(1), 53-61. doi:10.1007/s10142-009-0154-7Mukesh, M., Bionaz, M., Graugnard, D. E., Drackley, J. K., & Loor, J. J. (2010). Adipose tissue depots of Holstein cows are immune responsive: Inflammatory gene expression in vitro. Domestic Animal Endocrinology, 38(3), 168-178. doi:10.1016/j.domaniend.2009.10.001Newgard, C. B. (2017). Metabolomics and Metabolic Diseases: Where Do We Stand? Cell Metabolism, 25(1), 43-56. doi:10.1016/j.cmet.2016.09.018Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., … Svetkey, L. P. (2009). A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metabolism, 9(4), 311-326. doi:10.1016/j.cmet.2009.02.002Newman, A. W., Miller, A., Leal Yepes, F. A., Bitsko, E., Nydam, D., & Mann, S. (2019). The effect of the transition period and postpartum body weight loss on macrophage infiltrates in bovine subcutaneous adipose tissue. Journal of Dairy Science, 102(2), 1693-1701. doi:10.3168/jds.

    Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)-related antioxidant network abundance in subcutaneous adipose tissue of periparturient Holstein cows

    Full text link
    [EN] Dairy cows with high body condition score (BCS) in late prepartum are more susceptible to oxidative stress (OS). Nuclear factor erythroid 2-like 2 (NFE2L2) is a major antioxidant transcription factor. We investigated the effect of precalving BCS on blood biomarkers associated with OS, inflammation, and liver function, along with mRNA and protein abundance of targets related to NFE2L2 and glutathione (GSH) metabolism in s.c. adipose tissue (SAT) of periparturient dairy cows. Twenty-two multiparous Holstein cows were retrospectively classified into a high BCS (HBCS; n = 11, BCS ¿3.5) or normal BCS (NBCS; n = 11, BCS ¿3.17) on d 28 before parturition. Cows were fed a corn silage- and wheat straw-based total mixed ration during late prepartum, and a corn silage- and alfalfa hay-based total mixed ration postpartum. Blood samples obtained at ¿10, 7, 15, and 30 d relative to parturition were used for analyses of biomarkers associated with inflammation, including albumin, ceruloplasmin, haptoglobin, and myeloperoxidase, as well as OS, including ferric reducing ability of plasma (FRAP), reactive oxygen species (ROS), and ß-carotene. Adipose biopsies harvested at ¿15, 7, and 30 d relative to parturition were analyzed for mRNA (real-time quantitative PCR) and protein abundance (Western blotting) of targets associated with the antioxidant transcription regulator nuclear factor, NFE2L2, and GSH metabolism pathway. In addition, concentrations of GSH, ROS and malondialdehyde were measured. High BCS cows had lower prepartum dry matter intake expressed as a percentage of body weight along with greater BCS loss between ¿4 and 4 wk relative to parturition. Plasma concentrations of ROS and FRAP increased after parturition regardless of treatment. Compared with NBCS, HBCS cows had greater concentrations of FRAP at d 7 postpartum, which coincided with peak values in those cows. In addition, NBCS cows experienced a marked decrease in plasma ROS after d 7 postpartum, while HBCS cows maintained a constant concentration by d 30 postpartum. Overall, ROS concentrations in SAT were greater in HBCS cows. However, overall mRNA abundance of NFE2L2 was lower and cullin 3 (CUL3), a negative regulator of NFE2L2, was greater in HBCS cows. Although HBCS cows had greater overall total protein abundance of NFE2L2 in SAT, ratio of phosphorylated NFE2L2 to total NFE2L2 was lower, suggesting a decrease in the activity of this antioxidant system. Overall, mRNA abundance of the GSH metabolism-related genes glutathione reductase (GSR), glutathione peroxidase 1 (GPX1), and transaldolase 1 (TALDO1), along with protein abundance of glutathione S-transferase mu 1 (GSTM1), were greater in HBCS cows. Data suggest that HBCS cows might experience greater systemic OS after parturition, while increased abundance of mRNA and protein components of the GSH metabolism pathway in SAT might help alleviate tissue oxidant status. Data underscored the importance of antioxidant mechanisms at the tissue level. Thus, targeting these pathways in SAT during the periparturient period via nutrition might help control tissue remodeling while allowing optimal performance.Y. Liang is a recipient of a doctoral fellowship from China Scholarship Council (CSC, Beijing, China). A. S. Alharthi received a fellowship from King Saud University to perform his PhD studies at the University of Illinois (Urbana). A. A. Elolimy was recipient of a fellowship from Higher Education Ministry, Egypt to perform his Ph.D. studies at the University of Illinois (Urbana). We thank Perdue AgriBusiness (Salisbury, MD) for the donation of ProvAAL2 AADvantage during the course of the experiment. The authors have not stated any conflicts of interest.Liang, Y.; Alharthi, A.; Bucktrout, R.; Elolimy, A.; Lopreiato, V.; Martinez-Cortes, I.; Xu, C.... (2020). Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)-related antioxidant network abundance in subcutaneous adipose tissue of periparturient Holstein cows. Journal of Dairy Science. 103(7):6439-6453. https://doi.org/10.3168/jds.2019-17813S643964531037Alharthi, A., Zhou, Z., Lopreiato, V., Trevisi, E., & Loor, J. J. (2018). Body condition score prior to parturition is associated with plasma and adipose tissue biomarkers of lipid metabolism and inflammation in Holstein cows. Journal of Animal Science and Biotechnology, 9(1). doi:10.1186/s40104-017-0221-1Aquilano, K., Baldelli, S., & Ciriolo, M. R. (2014). Glutathione: new roles in redox signaling for an old antioxidant. Frontiers in Pharmacology, 5. doi:10.3389/fphar.2014.00196Arias, E., González, A., Shimada, A., Varela-Echavarria, A., Ruiz-López, F., During, A., & Mora, O. (2009). β-Carotene is incorporated or mobilized along with triglycerides in bovine adipose tissue in response to insulin or epinephrine. Journal of Animal Physiology and Animal Nutrition, 93(1), 83-93. doi:10.1111/j.1439-0396.2007.00783.xBatistel, F., Arroyo, J. M., Bellingeri, A., Wang, L., Saremi, B., Parys, C., … Loor, J. J. (2017). Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 100(9), 7455-7467. doi:10.3168/jds.2017-12689Batistel, F., Arroyo, J. M., Garces, C. I. M., Trevisi, E., Parys, C., Ballou, M. A., … Loor, J. J. (2018). Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 101(1), 480-490. doi:10.3168/jds.2017-13185Bernabucci, U., Ronchi, B., Lacetera, N., & Nardone, A. (2005). Influence of Body Condition Score on Relationships Between Metabolic Status and Oxidative Stress in Periparturient Dairy Cows. Journal of Dairy Science, 88(6), 2017-2026. doi:10.3168/jds.s0022-0302(05)72878-2Bertoni, G., Trevisi, E., Han, X., & Bionaz, M. (2008). Effects of Inflammatory Conditions on Liver Activity in Puerperium Period and Consequences for Performance in Dairy Cows. Journal of Dairy Science, 91(9), 3300-3310. doi:10.3168/jds.2008-0995Bionaz, M., Trevisi, E., Calamari, L., Librandi, F., Ferrari, A., & Bertoni, G. (2007). Plasma Paraoxonase, Health, Inflammatory Conditions, and Liver Function in Transition Dairy Cows. Journal of Dairy Science, 90(4), 1740-1750. doi:10.3168/jds.2006-445Bozinovski, S., Seow, H. J., Crack, P. J., Anderson, G. P., & Vlahos, R. (2012). Glutathione Peroxidase-1 Primes Pro-Inflammatory Cytokine Production after LPS Challenge In Vivo. PLoS ONE, 7(3), e33172. doi:10.1371/journal.pone.0033172Buelna-Chontal, M., & Zazueta, C. (2013). Redox activation of Nrf2 & NF-κB: A double end sword? Cellular Signalling, 25(12), 2548-2557. doi:10.1016/j.cellsig.2013.08.007Cerón,, J. J., Eckersall,, P. D., & Martínez-Subiela, S. (2005). Acute phase proteins in dogs and cats: current knowledge and future perspectives. Veterinary Clinical Pathology, 34(2), 85-99. doi:10.1111/j.1939-165x.2005.tb00019.xCohen, G., & Hochstein, P. (1963). Glutathione Peroxidase: The Primary Agent for the Elimination of Hydrogen Peroxide in Erythrocytes*. Biochemistry, 2(6), 1420-1428. doi:10.1021/bi00906a038De Koster, J., Hostens, M., Van Eetvelde, M., Hermans, K., Moerman, S., Bogaert, H., … Opsomer, G. (2015). Insulin response of the glucose and fatty acid metabolism in dry dairy cows across a range of body condition scores. Journal of Dairy Science, 98(7), 4580-4592. doi:10.3168/jds.2015-9341De Koster, J., Strieder-Barboza, C., de Souza, J., Lock, A. L., & Contreras, G. A. (2018). Short communication: Effects of body fat mobilization on macrophage infiltration in adipose tissue of early lactation dairy cows. Journal of Dairy Science, 101(8), 7608-7613. doi:10.3168/jds.2017-14318De Koster, J., Van den Broeck, W., Hulpio, L., Claeys, E., Van Eetvelde, M., Hermans, K., … Opsomer, G. (2016). Influence of adipocyte size and adipose depot on the in vitro lipolytic activity and insulin sensitivity of adipose tissue in dairy cows at the end of the dry period. Journal of Dairy Science, 99(3), 2319-2328. doi:10.3168/jds.2015-10440Depreester, E., De Koster, J., Van Poucke, M., Hostens, M., Van den Broeck, W., Peelman, L., … Opsomer, G. (2018). Influence of adipocyte size and adipose depot on the number of adipose tissue macrophages and the expression of adipokines in dairy cows at the end of pregnancy. Journal of Dairy Science, 101(7), 6542-6555. doi:10.3168/jds.2017-13777Depreester, E., Meyer, E., Demeyere, K., Van Eetvelde, M., Hostens, M., & Opsomer, G. (2017). Flow cytometric assessment of myeloperoxidase in bovine blood neutrophils and monocytes. Journal of Dairy Science, 100(9), 7638-7647. doi:10.3168/jds.2016-12186Dickinson, D. A., & Forman, H. J. (2002). Cellular glutathione and thiols metabolism. Biochemical Pharmacology, 64(5-6), 1019-1026. doi:10.1016/s0006-2952(02)01172-3Drevet, J. R. (2006). The antioxidant glutathione peroxidase family and spermatozoa: A complex story. Molecular and Cellular Endocrinology, 250(1-2), 70-79. doi:10.1016/j.mce.2005.12.027Edmonson, A. J., Lean, I. J., Weaver, L. D., Farver, T., & Webster, G. (1989). A Body Condition Scoring Chart for Holstein Dairy Cows. Journal of Dairy Science, 72(1), 68-78. doi:10.3168/jds.s0022-0302(89)79081-0Frey, S. K., & Vogel, S. (2011). Vitamin A Metabolism and Adipose Tissue Biology. Nutrients, 3(1), 27-39. doi:10.3390/nu3010027Gessner, D. K., Schlegel, G., Keller, J., Schwarz, F. J., Ringseis, R., & Eder, K. (2013). Expression of target genes of nuclear factor E2-related factor 2 in the liver of dairy cows in the transition period and at different stages of lactation. Journal of Dairy Science, 96(2), 1038-1043. doi:10.3168/jds.2012-5967Graugnard, D. E., Moyes, K. M., Trevisi, E., Khan, M. J., Keisler, D., Drackley, J. K., … Loor, J. J. (2013). Liver lipid content and inflammometabolic indices in peripartal dairy cows are altered in response to prepartal energy intake and postpartal intramammary inflammatory challenge. Journal of Dairy Science, 96(2), 918-935. doi:10.3168/jds.2012-5676Han, L., Batistel, F., Ma, Y., Alharthi, A. S. M., Parys, C., & Loor, J. J. (2018). Methionine supply alters mammary gland antioxidant gene networks via phosphorylation of nuclear factor erythroid 2-like 2 (NFE2L2) protein in dairy cows during the periparturient period. Journal of Dairy Science, 101(9), 8505-8512. doi:10.3168/jds.2017-14206Han, L. Q., Zhou, Z., Ma, Y., Batistel, F., Osorio, J. S., & Loor, J. J. (2018). Phosphorylation of nuclear factor erythroid 2-like 2 (NFE2L2) in mammary tissue of Holstein cows during the periparturient period is associated with mRNA abundance of antioxidant gene networks. Journal of Dairy Science, 101(7), 6511-6522. doi:10.3168/jds.2017-14257Harvey, C. J., Thimmulappa, R. K., Singh, A., Blake, D. J., Ling, G., Wakabayashi, N., … Biswal, S. (2009). Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radical Biology and Medicine, 46(4), 443-453. doi:10.1016/j.freeradbiomed.2008.10.040Holtenius, K., Agenäs, S., Delavaud, C., & Chilliard, Y. (2003). Effects of Feeding Intensity During the Dry Period. 2. Metabolic and Hormonal Responses. Journal of Dairy Science, 86(3), 883-891. doi:10.3168/jds.s0022-0302(03)73671-6Jaakson, H., Karis, P., Ling, K., Ilves-Luht, A., Samarütel, J., Henno, M., … Ots, M. (2018). Adipose tissue insulin receptor and glucose transporter 4 expression, and blood glucose and insulin responses during glucose tolerance tests in transition Holstein cows with different body condition. Journal of Dairy Science, 101(1), 752-766. doi:10.3168/jds.2017-12877Ji, P., Osorio, J. S., Drackley, J. K., & Loor, J. J. (2012). Overfeeding a moderate energy diet prepartum does not impair bovine subcutaneous adipose tissue insulin signal transduction and induces marked changes in peripartal gene network expression. Journal of Dairy Science, 95(8), 4333-4351. doi:10.3168/jds.2011-5079Kobayashi, H., Matsuda, M., Fukuhara, A., Komuro, R., & Shimomura, I. (2009). Dysregulated glutathione metabolism links to impaired insulin action in adipocytes. American Journal of Physiology-Endocrinology and Metabolism, 296(6), E1326-E1334. doi:10.1152/ajpendo.90921.2008Lacetera, N., Scalia, D., Bernabucci, U., Ronchi, B., Pirazzi, D., & Nardone, A. (2005). Lymphocyte Functions in Overconditioned Cows Around Parturition. Journal of Dairy Science, 88(6), 2010-2016. doi:10.3168/jds.s0022-0302(05)72877-0LeBlanc, S. J., Herdt, T. H., Seymour, W. M., Duffield, T. F., & Leslie, K. E. (2004). Peripartum Serum Vitamin E, Retinol, and Beta-Carotene in Dairy Cattle and Their Associations with Disease. Journal of Dairy Science, 87(3), 609-619. doi:10.3168/jds.s0022-0302(04)73203-8Liang, Y., Batistel, F., Parys, C., & Loor, J. J. (2019). Glutathione metabolism and nuclear factor erythroid 2-like 2 (NFE2L2)-related proteins in adipose tissue are altered by supply of ethyl-cellulose rumen-protected methionine in peripartal Holstein cows. Journal of Dairy Science, 102(6), 5530-5541. doi:10.3168/jds.2018-15687Loor, J. J. (2010). Genomics of metabolic adaptations in the peripartal cow. Animal, 4(7), 1110-1139. doi:10.1017/s1751731110000960Loor, J. J., Bertoni, G., Hosseini, A., Roche, J. R., & Trevisi, E. (2013). Functional welfare – using biochemical and molecular technologies to understand better the welfare state of peripartal dairy cattle. Animal Production Science, 53(9), 931. doi:10.1071/an12344Loor, J. J., Bionaz, M., & Drackley, J. K. (2013). Systems Physiology in Dairy Cattle: Nutritional Genomics and Beyond. Annual Review of Animal Biosciences, 1(1), 365-392. doi:10.1146/annurev-animal-031412-103728Lopreiato, V., Minuti, A., Trimboli, F., Britti, D., Morittu, V. M., Cappelli, F. P., … Trevisi, E. (2019). Immunometabolic status and productive performance differences between periparturient Simmental and Holstein dairy cows in response to pegbovigrastim. Journal of Dairy Science, 102(10), 9312-9327. doi:10.3168/jds.2019-16323Lu, S. C. (2009). Regulation of glutathione synthesis. Molecular Aspects of Medicine, 30(1-2), 42-59. doi:10.1016/j.mam.2008.05.005Ma, Q. (2013). Role of Nrf2 in Oxidative Stress and Toxicity. Annual Review of Pharmacology and Toxicology, 53(1), 401-426. doi:10.1146/annurev-pharmtox-011112-140320Ma, Y. F., Wu, Z. H., Gao, M., & Loor, J. J. (2018). Nuclear factor erythroid 2-related factor 2 antioxidant response element pathways protect bovine mammary epithelial cells against H2O2-induced oxidative damage in vitro. Journal of Dairy Science, 101(6), 5329-5344. doi:10.3168/jds.2017-14128Ma, Y. F., Zhao, L., Coleman, D. N., Gao, M., & Loor, J. J. (2019). Tea polyphenols protect bovine mammary epithelial cells from hydrogen peroxide-induced oxidative damage in vitro by activating NFE2L2/HMOX1 pathways. Journal of Dairy Science, 102(2), 1658-1670. doi:10.3168/jds.2018-15047Newman, A. W., Miller, A., Leal Yepes, F. A., Bitsko, E., Nydam, D., & Mann, S. (2019). The effect of the transition period and postpartum body weight loss on macrophage infiltrates in bovine subcutaneous adipose tissue. Journal of Dairy Science, 102(2), 1693-1701. doi:10.3168/jds.2018-15362Onaran, İ., Güven, G., Ozaydin, A., & Ulutin, T. (2001). The influence of GSTM1 null genotype on susceptibility to in vitro oxidative stress. Toxicology, 157(3), 195-205. doi:10.1016/s0300-483x(00)00358-9Osorio, J. S., Ji, P., Drackley, J. K., Luchini, D., & Loor, J. J. (2014). Smartamine M and MetaSmart supplementation during the peripartal period alter hepatic expression of gene networks in 1-carbon metabolism, inflammation, oxidative stress, and the growth hormone–insulin-like growth factor 1 axis pathways. Journal of Dairy Science, 97(12), 7451-7464. doi:10.3168/jds.2014-8680Östh, M., Öst, A., Kjolhede, P., & Strålfors, P. (2014). The Concentration of β-Carotene in Human Adipocytes, but Not the Whole-Body Adipocyte Stores, Is Reduced in Obesity. PLoS ONE, 9(1), e85610. doi:10.1371/journal.pone.0085610Pires, J. A. A., Delavaud, C., Faulconnier, Y., Pomiès, D., & Chilliard, Y. (2013). Effects of body condition score at calving on indicators of fat and protein mobilization of periparturient Holstein-Friesian cows. Journal of Dairy Science, 96(10), 6423-6439. doi:10.3168/jds.2013-6801Ray, P. D., Huang, B.-W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 24(5), 981-990. doi:10.1016/j.cellsig.2012.01.008Reid, I. M., Roberts, C. J., Treacher, R. J., & Williams, L. A. (1986). Effect of body condition at calving on tissue mobilization, development of fatty liver and blood chemistry of dairy cows. Animal Science, 43(1), 7-15. doi:10.1017/s0003356100018298Reynolds, C. K., Aikman, P. C., Lupoli, B., Humphries, D. J., & Beever, D. E. (2003). Splanchnic Metabolism of Dairy Cows During the Transition From Late Gestation Through Early Lactation. Journal of Dairy Science, 86(4), 1201-1217. doi:10.3168/jds.s0022-0302(03)73704-7Rocco, S. M., & McNamara, J. P. (2013). Regulation of bovine adipose tissue metabolism during lactation. 7. Metabolism and gene expression as a function of genetic merit and dietary energy intake. Journal of Dairy Science, 96(5), 3108-3119. doi:10.3168/jds.2012-6097Roche, J. R., Friggens, N. C., Kay, J. K., Fisher, M. W., Stafford, K. J., & Berry, D. P. (2009). Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. Journal of Dairy Science, 92(12), 5769-5801. doi:10.3168/jds.2009-2431Roche, J. R., Kay, J. K., Friggens, N. C., Loor, J. J., & Berry, D. P. (2013). Assessing and Managing Body Condition Score for the Prevention of Metabolic Disease in Dairy Cows. Veterinary Clinics of North America: Food Animal Practice, 29(2), 323-336. doi:10.1016/j.cvfa.2013.03.003Schneider, K. S., & Chan, J. Y. (2013). Emerging Role of Nrf2 in Adipocytes and Adipose Biology. Advances in Nutrition, 4(1), 62-66. doi:10.3945/an.112.003103Seo, H.-A., & Lee, I.-K. (2013). The Role of Nrf2: Adipocyte Differentiation, Obesity, and Insulin Resistance. Oxidative Medicine and Cellular Longevity, 2013, 1-7. doi:10.1155/2013/184598Sordillo, L. M., & Raphael, W. (2013). Significance of Metabolic Stress, Lipid Mobilization, and Inflammation on Transition Cow Disorders. Veterinary Clinics of North America: Food Animal Practice, 29(2), 267-278. doi:10.1016/j.cvfa.2013.03.002Spears, J. W., & Weiss, W. P. (2008). Role of antioxidants and trace elements in health and immunity of transition dairy cows. The Veterinary Journal, 176(1), 70-76. doi:10.1016/j.tvjl.2007.12.015Sun, X., Li, X., Jia, H., Loor, J. J., Bucktrout, R., Xu, Q., … Li, X. (2019). Effect of heat-shock protein B7 on oxidative stress in adipocytes from preruminant calves. Journal of Dairy Science, 102(6), 5673-5685. doi:10.3168/jds.2018-15726Surmi, B. K., & Hasty, A. H. (2010). The role of chemokines in recruitment of immune cells to the artery wall and adipose tissue. Vascular Pharmacology, 52(1-2), 27-36. doi:10.1016/j.vph.2009.12.004Suzuki, T., & Yamamoto, M. (2017). Stress-sensing mechanisms and the physiological roles of the Keap1–Nrf2 system during cellular stress. Journal of Biological Chemistry, 292(41), 16817-16824. doi:10.1074/jbc.r117.800169Tourniaire, F., Gouranton, E., von Lintig, J., Keijer, J., Luisa Bonet, M., Amengual, J., … Landrier, J.-F. (2009). β-Carotene conversion products and their effects on adipose tissue. Genes & Nutrition, 4(3), 179-187. doi:10.1007/s12263-009-0128-3Treacher, R. J., Reid, I. M., & Roberts, C. J. (1986). Effect of body condition at calving on the health and performance of dairy cows. Animal Science, 43(1), 1-6. doi:10.1017/s0003356100018286Trevisi, E., Bertoni, G., Lombardelli, R., & Minuti, A. (2013). Relation of inflammation and liver function with the plasma cortisol response to adrenocorticotropin in early lactating dairy cows. Journal of Dairy Science, 96(9), 5712-5722. doi:10.3168/jds.2012-6375Vailati-Riboni, M., Farina, G., Batistel, F., Heiser, A., Mitchell, M. D., Crookenden, M. A., … Loor, J. J. (2017). Far-off and close-up dry matter intake modulate indicators of immunometabolic adaptations to lactation in subcutaneous adipose tissue of pasture-based transition dairy cows. Journal of Dairy Science, 100(3), 2334-2350. doi:10.3168/jds.2016-11790Vailati-Riboni, M., Kanwal, M., Bulgari, O., Meier, S., Priest, N. V., Burke, C. R., … Loor, J. J. (2016). Body condition score and plane of nutrition prepartum affect adipose tissue transcriptome regulators of metabolism and inflammation in grazing dairy cows during the transition period. Journal of Dairy Science, 99(1), 758-770. doi:10.3168/jds.2015-10046Vailati Riboni, M., Meier, S., Priest, N. V., Burke, C. R., Kay, J. K., McDougall, S., … Loor, J. J. (2015). Adipose and liver gene expression profiles in response to treatment with a nonsteroidal antiinflammatory drug after calving in grazing dairy cows. Journal of Dairy Science, 98(5), 3079-3085. doi:10.3168/jds.2014-8579Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44-84. doi:10.1016/j.biocel.2006.07.001Wu, G., Fang, Y.-Z., Yang, S., Lupton, J. R., & Turner, N. D. (2004). Glutathione Metabolism and Its Implications for Health. The Journal of Nutrition, 134(3), 489-492. doi:10.1093/jn/134.3.489Xu, Q., Jia, H., Ma, L., Liu, G., Xu, C., Li, Y., … Li, X. (2019). All-trans retinoic acid inhibits lipopolysaccharide-induced inflammatory responses in bovine adipocytes via TGFβ1/Smad3 signaling pathway. BMC Veterinary Research, 15(1). doi:10.1186/s12917-019-1791-2Zachu

    Short communication: Supply of methionine during late pregnancy enhances whole-blood innate immune response of Holstein calves partly through changes in mRNA abundance in polymorphonuclear leukocytes

    Get PDF
    The supply of methionine (Met) in late pregnancy can alter mRNA abundance of genes associated with metabolism and immune response in liver and polymorphonuclear leukocytes (PMN) of the neonatal calf. Whether prenatal supply of Met elicits postnatal effects on systemic inflammation and innate immune response of the calf is not well known. We investigated whether enhancing the maternal supply of Met via feeding ethyl-cellulose rumen-protected Met (RPM) was associated with differences in calf innate immune response mRNA abundance in PMN and systemic indicators of inflammation during the first 50 d of life. Calves (n = 14 per maternal diet) born to cows fed RPM at 0.09% of diet dry matter per day (MET) for the last 28 ± 2 d before calving or fed a control diet with no added Met (CON) were used. Blood for biomarker analysis and isolation of PMN for innate immune function assays and mRNA abundance was harvested at birth (before colostrum feeding) and at 7, 21 and 50 d of age. Whole blood was challenged with enteropathogenic bacteria (Escherichia coli 0118:H8) and phagocytosis and oxidative burst of neutrophils and monocytes were quantified via flow cytometry. Although concentration of haptoglobin and activity of myeloperoxidase among calves from both maternal groups increased markedly between 0 and 7 d of age followed by a decrease to baseline at d 21 the responses were lower in MET compared with CON calves. Nitric oxide concentration decreased markedly between 0 and 7 d regardless of maternal group but MET calves tended to have lower overall concentrations during the study. In vitro phagocytosis in stimulated neutrophils increased markedly over time in both CON and MET calves but responses were overall greater in MET calves. Oxidative burst in both neutrophils and monocytes increased over time regardless of maternal treatment. The mRNA abundance of lactate dehydrogenase (LDHA) signal transducer and activator of transcription 3 (STAT3) and S100 calcium binding protein A8 (S100A8) in PMN was overall greater in MET calves. Overall data suggest that increasing the maternal supply of Met during late pregnancy could affect the neonatal calf inflammatory status and innate immune response. Although changes in mRNA abundance could play a role in coordinating the immune response the exact mechanisms merit further study

    Relationship between low Ankle-Brachial Index and rapid renal function decline in patients with atrial fibrillation: A prospective multicentre cohort study

    Get PDF
    OBJECTIVE: To investigate the relationship between Ankle-Brachial Index (ABI) and renal function progression in patients with atrial fibrillation (AF). DESIGN: Observational prospective multicentre cohort study. SETTING:Atherothrombosis Center of I Clinica Medica of 'Sapienza' University of Rome; Department of Medical and Surgical Sciences of University Magna Græcia of Catanzaro; Atrial Fibrillation Registry for Ankle-Brachial Index Prevalence Assessment-Collaborative Italian Study. PARTICIPANTS: 897 AF patients on treatment with vitamin K antagonists. MAIN OUTCOME MEASURES: The relationship between basal ABI and renal function progression, assessed by the estimated Glomerular Filtration Rate (eGFR) calculated with the CKD-EPI formula at baseline and after 2 years of follow-up. The rapid decline in eGFR, defined as a decline in eGFR >5 mL/min/1.73 m(2)/year, and incident eGFR<60 mL/min/1.73 m(2) were primary and secondary end points, respectively. RESULTS: Mean age was 71.8±9.0 years and 41.8% were women. Low ABI (ie, ≤0.90) was present in 194 (21.6%) patients. Baseline median eGFR was 72.7 mL/min/1.73 m(2), and 28.7% patients had an eGFR60 mL/min/1.73 m(2), 153 (23.9%) had a reduction of the eGFR <60 mL/min/1.73 m(2). ABI ≤0.90 was also an independent predictor for incident eGFR<60 mL/min/1.73 m(2) (HR 1.851, 95% CI 1.205 to 2.845, p=0.005). CONCLUSIONS: In patients with AF, an ABI ≤0.90 is independently associated with a rapid decline in renal function and incident eGFR<60 mL/min/1.73 m(2). ABI measurement may help identify patients with AF at risk of renal function deterioration

    Frequency of left ventricular hypertrophy in non-valvular atrial fibrillation

    Get PDF
    Left ventricular hypertrophy (LVH) is significantly related to adverse clinical outcomes in patients at high risk of cardiovascular events. In patients with atrial fibrillation (AF), data on LVH, that is, prevalence and determinants, are inconsistent mainly because of different definitions and heterogeneity of study populations. We determined echocardiographic-based LVH prevalence and clinical factors independently associated with its development in a prospective cohort of patients with non-valvular (NV) AF. From the "Atrial Fibrillation Registry for Ankle-brachial Index Prevalence Assessment: Collaborative Italian Study" (ARAPACIS) population, 1,184 patients with NVAF (mean age 72 \ub1 11 years; 56% men) with complete data to define LVH were selected. ARAPACIS is a multicenter, observational, prospective, longitudinal on-going study designed to estimate prevalence of peripheral artery disease in patients with NVAF. We found a high prevalence of LVH (52%) in patients with NVAF. Compared to those without LVH, patients with AF with LVH were older and had a higher prevalence of hypertension, diabetes, and previous myocardial infarction (MI). A higher prevalence of ankle-brachial index 640.90 was seen in patients with LVH (22 vs 17%, p = 0.0392). Patients with LVH were at significantly higher thromboembolic risk, with CHA2DS2-VASc 652 seen in 93% of LVH and in 73% of patients without LVH (p &lt;0.05). Women with LVH had a higher prevalence of concentric hypertrophy than men (46% vs 29%, p = 0.0003). Logistic regression analysis demonstrated that female gender (odds ratio [OR] 2.80, p &lt;0.0001), age (OR 1.03 per year, p &lt;0.001), hypertension (OR 2.30, p &lt;0.001), diabetes (OR 1.62, p = 0.004), and previous MI (OR 1.96, p = 0.001) were independently associated with LVH. In conclusion, patients with NVAF have a high prevalence of LVH, which is related to female gender, older age, hypertension, and previous MI. These patients are at high thromboembolic risk and deserve a holistic approach to cardiovascular prevention

    Huntington's disease, Calcium and Mitochondria.

    No full text
    Huntington's disease (HD) is caused by a mutation that increases the number of CAG repeats in the gene encoding for the protein Huntingtin (Htt). The mutation results in the pathological expansion of the polyQ stretch that is normally present within the N-terminal region of Htt. Even if Htt is ubiquitously expressed in tissues, the changes in the protein finally result in the clinical manifestation of motor and cognitive impairments observed in HD patients. The molecular ethiology of the disease is obscure: a number of cellular and animal models are used as essential tools in experimental approaches aimed at understanding it. Biochemical changes have been described that correlate with the malfunction of HD neurons (primarily in the striatum): consensus is gradually emerging that the dyshomeostasis of Ca(2+) and/or mitochondria stress are important factors in the linkage of the Htt mutation to the onset and progression of the disease. Here, we present a succint overview of the changes of Htt, of its possible effect on the transcription of critical genes and of its causative role in the disturbance of the neuronal Ca(2+) homeostasis. Particular emphasis will be placed on the role of mitochondria as key player in the molecular pathogenesis of the disease
    corecore