1,823 research outputs found

    SLAM-based augmented reality for the assessment of short-Term spatial memory. A comparative study of visual versus tactile stimuli

    Get PDF
    The assessment of human spatial short-Term memory has mainly been performed using visual stimuli and less frequently using auditory stimuli. This paper presents a framework for the development of SLAM-based Augmented Reality applications for the assessment of spatial memory. An AR mobile application was developed for this type of assessment involving visual and tactile stimuli by using our framework. The task to be carried out with the AR application is divided into two phases: 1) a learning phase, in which participants physically walk around a room and have to remember the location of simple geometrical shapes; and 2) an evaluation phase, in which the participants are asked to recall the location of the shapes. A study for comparing the performance outcomes using visual and tactile stimuli was carried out. Fifty-Three participants performed the task using the two conditions (Tactile vs Visual), but with more than two months of difference (within-subject design). The number of shapes placed correctly was similar for both conditions. However, the group that used the tactile stimulus spent significantly more time completing the task and required significantly more attempts. The performance outcomes were independent of gender. Some significant correlations among variables related to the performance outcomes and other tests were found. The following significant correlations among variables related to the performance outcomes using visual stimuli and the participants subjective variables were also found: 1) the greater the number of correctly placed shapes, the greater the perceived competence; 2) the more attempts required, the less the perceived competence. We also found that perceived enjoyment was higher when a higher sense of presence was induced. Our results suggest that tactile stimuli are valid stimuli to exploit for the assessment of the ability to memorize spatial-Tactile associations, but that the ability to memorize spatial-visual associations is dominant. Our results also show that gender does not affect these types of memory tasks

    Intraoperative goal directed hemodynamic therapy in noncardiac surgery: a systematic review and meta-analysis

    Get PDF
    Background: The goal directed hemodynamic therapy is an approach focused on the use of cardiac output and related parameters as end-points for fluids and drugs to optimize tissue perfusion and oxygen delivery. Primary aim: To determine the effects of intraoperative goal directed hemodynamic therapy on postoperative complications rates. Methods: A meta-analysis was carried out of the effects of goal directed hemodynamic therapy in adult noncardiac surgery on postoperative complications and mortality using Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology. A systematic search was performed in Medline PubMed, Embase, and the Cochrane Library (last update, October 2014). Inclusion criteria were randomized clinical trials in which intraoperative goal directed hemodynamic therapy was compared to conventional fluid management in noncardiac surgery. Exclusion criteria were trauma and pediatric surgery studies and that using pulmonary artery catheter. End-points were postoperative complications (primary) and mortality (secondary). Those studies that fulfilled the entry criteria were examined in full and subjected to quantifiable analysis, predefined subgroup analysis (stratified by type of monitor, therapy, and hemodynamic goal), and predefined sensitivity analysis. Results: 51 RCTs were initially identified, 24 fulfilling the inclusion criteria. 5 randomized clinical trials were added by manual search, resulting in 29 randomized clinical trials in the final analysis, including 2654 patients. A significant reduction in complications for goal directed hemodynamic therapy was observed (RR: 0.70, 95% CI: 0.62-0.79, p < 0.001). No significant decrease in mortality was achieved (RR: 0.76, 95% CI: 0.45-1.28, p = 0.30). Quality sensitive analyses confirmed the main overall results. Conclusions: Intraoperative goal directed hemodynamic therapy with minimally invasive monitoring decreases postoperative complications in noncardiac surgery, although it was not able to show a significant decrease in mortality rate

    Acute ST-segment elevation myocardial infarction after amoxycillin-induced anaphylactic shock in a young adult with normal coronary arteries: a case report

    Get PDF
    BACKGROUND: Acute myocardial infarction (MI) following anaphylaxis is rare, especially in subjects with normal coronary arteries. The exact pathogenetic mechanism of MI in anaphylaxis remains unclear. CASE PRESENTATION: The case of a 32-year-old asthmatic male with systemic anaphylaxis, due to oral intake of 500 mg amoxycillin, complicated by acute ST-elevation MI is the subject of this report. Following admission to the local Health Center and almost simultaneously with the second dose of subcutaneous epinephrine (0.2 mg), the patient developed acute myocardial injury. Coronary arteriography, performed before discharge, showed no evidence of obstructive coronary artery disease. In vivo allergological evaluation disclosed strong sensitivity to amoxycillin and the minor (allergenic) determinants of penicillin. CONCLUSION: Acute ST-elevation MI is a rare but potential complication of anaphylactic reactions, even in young adults with normal coronary arteries. Coronary artery spasm appears to be the main causative mechanism of MI in the setting of "cardiac anaphylaxis". However, on top of the vasoactive reaction, a thrombotic occlusion, induced by mast cell-derived mediators and facilitated by prolonged hypotension, cannot be excluded as a possible contributory factor

    CXCL6 is an important paracrine factor in the pro-angiogenic human cardiac progenitor-like cell secretome

    Get PDF
    Studies in recent years have established that the principal effects in cardiac cell therapy are associated with paracrine/autocrine factors. We combined several complementary techniques to define human cardiac progenitor cell (CPC) secretome constituted by 914 proteins/genes; 51% of these are associated with the exosomal compartment. To define the set of proteins specifically or highly differentially secreted by CPC, we compared human mesenchymal stem cells and dermal fibroblasts; the study defined a group of growth factors, cytokines and chemokines expressed at high to medium levels by CPC. Among them, IL-1, GROa (CXCL1), CXCL6 (GCP2) and IL-8 are examples whose expression was confirmed by most techniques used. ELISA showed that CXCL6 is significantly overexpressed in CPC conditioned medium (CM) (18- to 26-fold) and western blot confirmed expression of its receptors CXCR1 and CXCR2. Addition of anti-CXCL6 completely abolished migration in CPC-CM compared with anti-CXCR2, which promoted partial inhibition, and anti-CXCR1, which was inefficient. Anti-CXCL6 also significantly inhibited CPC CM angiogenic activity. In vivo evaluation also supported a relevant role for angiogenesis. Altogether, these results suggest a notable angiogenic potential in CPC-CM and identify CXCL6 as an important paracrine factor for CPC that signals mainly through CXCR2.This study was supported by funding from the European Commission (HEALTH-2009_242038) and by grants from the Spanish Ministry of Science and Innovation (SAF2012-34327 and SAF2015-70882-R to AB and BIO2012-37926 and BIO2015-67580-P to JV), the Research Program of the Comunidad Autónoma de Madrid (S2010/BMD-2420) and the Instituto de Salud Carlos III (RETICS-RD12/0019/0018 to AB and RETICS-RD12/0042/0056 to JV).S

    Global retrieval of stratospheric and tropospheric BrO columns from the Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) on board the Suomi-NPP satellite

    Get PDF
    Quantifying the global bromine monoxide (BrO) budget is essential to understand ozone chemistry better. In particular, the tropospheric BrO budget has not been well characterized. Here, we retrieve nearly a decade (February 2012–July 2021) of stratospheric and tropospheric BrO vertical columns from the Ozone Mapping and Profiling Suite Nadir Mapper (OMPS-NM) on board the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite. In quantifying tropospheric BrO enhancements from total slant columns, the key aspects involve segregating them from stratospheric enhancements and applying appropriate air mass factors. To address this concern and improve upon the existing methods, our study proposes an approach that applies distinct BrO vertical profiles based on the presence or absence of tropospheric BrO enhancement at each pixel, identifying it dynamically using a satellite-derived stratospheric-ozone–BrO relationship. We demonstrate good agreement for both stratosphere (r = 0.81–0.83) and troposphere (r = 0.50–0.70) by comparing monthly mean BrO vertical columns from OMPS-NM with ground-based observations from three stations (Lauder, Utqiaġvik, and Harestua). Although algorithm performance is primarily assessed at high latitudes, the OMPS-NM BrO retrievals successfully capture tropospheric enhancements not only in polar regions but also in extrapolar areas, such as the Rann of Kutch and the Great Salt Lake. We also estimate random uncertainties in the retrievals pixel by pixel, which can assist in quantitative applications of the OMPS-NM BrO dataset. Our BrO retrieval algorithm is designed for cross-sensor applications and can be adapted to other space-borne ultraviolet spectrometers, contributing to the creation of continuous long-term satellite BrO observation records.</p

    Tropospheric emissions: Monitoring of pollution (TEMPO)

    Get PDF
    TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2.1 km N/S×4.4 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O), nitrogen dioxide (NO), sulfur dioxide (SO), formaldehyde (HCO), glyoxal (CHO), bromine monoxide (BrO), IO (iodine monoxide), water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O chemistry cycle. Multi-spectral observations provide sensitivity to O in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.Peer Reviewe

    Effectiveness of rotavirus vaccination in Spain

    Get PDF
    With the aim of determining rotavirus vaccine effectiveness (RVVE) in Spain, from Oct-2008/Jun-2009, 467 consecutive children below 2 years old with acute gastroenteritis (AGE) were recruited using a pediatric research network (ReGALIP-www.regalip.org) that includes primary, emergency and hospital care settings. Of 467 enrolled children, 32.3% were rotavirus positive and 35.0% had received at least one dose of any rotavirus vaccine. RRVE to prevent any episode of rotavirus AGE was 91.5% (95% CI: 83.7%-95.6%). RVVE to prevent hospitalization by rotavirus AGE was 95.6% (85.6-98.6%). No differences in RVVE were found regarding the vaccine used. Rotavirus vaccines have showed an outstanding effectiveness in Spain

    Preclinical and randomized phase I studies of plitidepsin in adults hospitalized with COVID-19

    Get PDF
    Plitidepsin, a marine-derived cyclic-peptide, inhibits SARS-CoV-2 replication at nanomolar concentrations by targeting the host protein eukaryotic translation elongation factor 1A. Here, we show that plitidepsin distributes preferentially to lung over plasma, with similar potency against across several SARS-CoV-2 variants in preclinical studies. Simultaneously, in this randomized, parallel, open-label, proof-of-concept study (NCT04382066) conducted in 10 Spanish hospitals between May and November 2020, 46 adult hospitalized patients with confirmed SARS-CoV-2 infection received either 1.5 mg (n = 15), 2.0 mg (n = 16), or 2.5 mg (n = 15) plitidepsin once daily for 3 d. The primary objective was safety; viral load kinetics, mortality, need for increased respiratory support, and dose selection were secondary end points. One patient withdrew consent before starting procedures; 45 initiated treatment; one withdrew because of hypersensitivity. Two Grade 3 treatment-related adverse events were observed (hypersensitivity and diarrhea). Treatment-related adverse events affecting more than 5% of patients were nausea (42.2%), vomiting (15.6%), and diarrhea (6.7%). Mean viral load reductions from baseline were 1.35, 2.35, 3.25, and 3.85 log10 at days 4, 7, 15, and 31. Nonmechanical invasive ventilation was required in 8 of 44 evaluable patients (16.0%); six patients required intensive care support (13.6%), and three patients (6.7%) died (COVID-19-related). Plitidepsin has a favorable safety profile in patients with COVID-19

    Bafilomycin A1 activates respiration of neuronal cells via uncoupling associated with flickering depolarization of mitochondria

    Get PDF
    Bafilomycin A1 (Baf) induces an elevation of cytosolic Ca2+ and acidification in neuronal cells via inhibition of the V-ATPase. Also, Baf uncouples mitochondria in differentiated PC12 (dPC12), dSH-SY5Y cells and cerebellar granule neurons, and markedly elevates their respiration. This respiratory response in dPC12 is accompanied by morphological changes in the mitochondria and decreases the mitochondrial pH, Ca2+ and ΔΨm. The response to Baf is regulated by cytosolic Ca2+ fluxes from the endoplasmic reticulum. Inhibition of permeability transition pore opening increases the depolarizing effect of Baf on the ΔΨm. Baf induces stochastic flickering of the ΔΨm with a period of 20 ± 10 s. Under conditions of suppressed ATP production by glycolysis, oxidative phosphorylation impaired by Baf does not provide cells with sufficient ATP levels. Cells treated with Baf become more susceptible to excitation with KCl. Such mitochondrial uncoupling may play a role in a number of (patho)physiological conditions induced by Baf
    corecore