109 research outputs found

    Experimental and theoretical investigation of the energy dissipation of a rolling disk during its final stage of motion

    Get PDF
    This paper is concerned with the dominant dissipation mechanism for a rolling disk in the final stage of its motion. The aim of this paper is to present the various dissipation mechanisms for a rolling disk which are used in the literature in a unified framework. Furthermore, new experiments on the ‘Euler disk' using a high-speed video camera and a novel image analysis technique are presented. The combined experimental/theoretical approach of this paper sheds some more light on the dominant dissipation mechanism on the time-scale of several second

    Stability properties of equilibrium sets of non-linear mechanical systems with dry friction and impact

    Get PDF
    In this paper, we will give conditions under which the equilibrium set of multi-degree-of-freedom non-linear mechanical systems with an arbitrary number of frictional unilateral constraints is attractive. The theorems for attractivity are proved by using the framework of measure differential inclusions together with a Lyapunov-type stability analysis and a generalisation of LaSalle's invariance principle for non-smooth systems. The special structure of mechanical multi-body systems allows for a natural Lyapunov function and an elegant derivation of the proof. Moreover, an instability theorem for assessing the instability of equilibrium sets of non-linear mechanical systems with frictional bilateral constraints is formulated. These results are illustrated by means of examples with both unilateral and bilateral frictional constraint

    Hamilton's Principle as Variational Inequality forMechanical Systems with Impact

    Get PDF
    The classical form of Hamilton's principle holds for conservative systems with perfect bilateral constraints. Several attempts have been made in literature to generalise Hamilton's principle for mechanical systems with perfect unilateral constraints involving impulsive motion. This has led to a number of different variants of Hamilton's principle, some expressed as variational inequalities. Up to now, the connection between these different principles has been missing. The aim of this paper is to put these different principles of Hamilton in a unified framework by using the concept of weak and strong extrema. The difference between weak and strong variations of the motion is explained in detail. Each type of variation leads to a variant of the principle of Hamilton in the form of a variational inequality. The conclusion of the paper is that each type of variation leads to different necessary and sufficient conditions on the impact law. The principle of Hamilton with strong variations is valid for perfect unilateral constraints with a completely elastic impact law, whereas the weak form of Hamilton's principle only requires perfect unilateral constraints and no condition on the energ

    Dynamics of a Rolling Disk in the Presence of Dry Friction

    Get PDF
    In this paper we are interested in the dynamics and numerical treatment of a rolling disk on a flat support. The objective of the paper is to develop a numerical model which is able to simulate the dynamics of a rolling disk taking into account various kinds a friction models (resistance against sliding, pivoting and rolling). A mechanical model of a rolling disk is presented in the framework of Non-smooth Dynamics and Convex Analysis. In an analytical study, approximations are derived for the energy decay of the system during the final stage of the motion for various kinds of frictional dissipation models. Finally, the numerical and analytical results are discussed and compared with experimental results available in literatur

    Shrinking Point Bifurcations of Resonance Tongues for Piecewise-Smooth, Continuous Maps

    Full text link
    Resonance tongues are mode-locking regions of parameter space in which stable periodic solutions occur; they commonly occur, for example, near Neimark-Sacker bifurcations. For piecewise-smooth, continuous maps these tongues typically have a distinctive lens-chain (or sausage) shape in two-parameter bifurcation diagrams. We give a symbolic description of a class of "rotational" periodic solutions that display lens-chain structures for a general NN-dimensional map. We then unfold the codimension-two, shrinking point bifurcation, where the tongues have zero width. A number of codimension-one bifurcation curves emanate from shrinking points and we determine those that form tongue boundaries.Comment: 27 pages, 6 figure

    Attractivity of Equilibrium Sets of Systems with Dry Friction

    Full text link

    Scaling of Saddle-Node Bifurcations: Degeneracies and Rapid Quantitative Changes

    Full text link
    The scaling of the time delay near a "bottleneck" of a generic saddle-node bifurcation is well-known to be given by an inverse square-root law. We extend the analysis to several non-generic cases for smooth vector fields. We proceed to investigate C0C^0 vector fields. Our main result is a new phenomenon in two-parameter families having a saddle-node bifurcation upon changing the first parameter. We find distinct scalings for different values of the second parameter ranging from power laws with exponents in (0,1) to scalings given by O(1). We illustrate this rapid quantitative change of the scaling law by a an overdamped pendulum with varying length.Comment: preprint version - for final version see journal referenc

    Simulation of rockfall trajectories with consideration of rock shape

    Get PDF
    The aim of the paper is to develop a fully 3D simulation technique for rockfall dynamics taking rock shape into account and using the state-of-the-art methods of multibody dynamics and nonsmooth contact dynamics. The rockfall simulation technique is based on the nonsmooth contact dynamics method with hard contact laws. The rock is modeled as an arbitrary convex polyhedron and the terrain model is based on a high resolution digital elevation model. A specialized friction law for rockfall is proposed which allows for the description of scarring behavior (i.e., rocks tend to slide over the terrain before lift-off). The influence of rock geometry on rockfall dynamics is studied through two well-chosen numerical simulations

    Mixed-Mode Oscillations in a Stochastic, Piecewise-Linear System

    Full text link
    We analyze a piecewise-linear FitzHugh-Nagumo model. The system exhibits a canard near which both small amplitude and large amplitude periodic orbits exist. The addition of small noise induces mixed-mode oscillations (MMOs) in the vicinity of the canard point. We determine the effect of each model parameter on the stochastically driven MMOs. In particular we show that any parameter variation (such as a modification of the piecewise-linear function in the model) that leaves the ratio of noise amplitude to time-scale separation unchanged typically has little effect on the width of the interval of the primary bifurcation parameter over which MMOs occur. In that sense, the MMOs are robust. Furthermore we show that the piecewise-linear model exhibits MMOs more readily than the classical FitzHugh-Nagumo model for which a cubic polynomial is the only nonlinearity. By studying a piecewise-linear model we are able to explain results using analytical expressions and compare these with numerical investigations.Comment: 25 pages, 10 figure

    Dynamics of Simple Balancing Models with State Dependent Switching Control

    Full text link
    Time-delayed control in a balancing problem may be a nonsmooth function for a variety of reasons. In this paper we study a simple model of the control of an inverted pendulum by either a connected movable cart or an applied torque for which the control is turned off when the pendulum is located within certain regions of phase space. Without applying a small angle approximation for deviations about the vertical position, we see structurally stable periodic orbits which may be attracting or repelling. Due to the nonsmooth nature of the control, these periodic orbits are born in various discontinuity-induced bifurcations. Also we show that a coincidence of switching events can produce complicated periodic and aperiodic solutions.Comment: 36 pages, 12 figure
    • …
    corecore