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Summary. In this paper we are interested in the dynamics and numerical treatment of a
rolling disk on a flat support. The objective of the paper is to develop a numerical model
which is able to simulate the dynamics of a rolling disk taking into account various kinds
a friction models (resistance against sliding, pivoting and rolling). A mechanical model
of a rolling disk is presented in the framework of Non-smooth Dynamics and Convex
Analysis. In an analytical study, approximations are derived for the energy decay of the
system during the final stage of the motion for various kinds of frictional dissipation
models. Finally, the numerical and analytical results are discussed and compared with
experimental results available in literature.
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1. Introduction

How can moving bodies be stopped in finite time? Many answers different from classical
solutions are provided by nonsmooth dynamics, which deals with measure differential
inclusions from time-evolution problems in mechanics. The most familiar examples of
such systems are collisions of rigid bodies and Coulomb’s law of dry friction. Nonsmooth
dynamics, however, is much more than friction and impacts. It provides an extended con-
cept of classical analytical mechanics with all its subdisciplines and modern extensions,
such as multibody dynamics and robotics, by allowing for set-valued constitutive laws
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and discontinuities in the state variables as functions of time. Set-valued constitutive
laws provide a sound basis for switching on and off various kinds of constraints in a
most consistent way, where the switching rules are embedded in the constitutive laws
themselves. One important subclass of such constitutive laws are those expressed by nor-
mal cone inclusions from convex analysis, as used in this paper, because they generalize
the dynamics on manifolds to manifolds with boundary. As one of the most demanding
examples, the classical problem of a rolling disk is chosen with the main emphasis be-
ing the numerical study of the dissipation mechanisms generated by different kinds of
set-valued constitutive laws at the contact point.

The theoretical framework developed during the last decades in the fields of numerical
analysis and nonsmooth dynamics provides the basis for the efficient numerical simu-
lation of multibody systems submitted to multiple unilateral contact constraints with
friction. When dealing with multibody systems submitted to many unilateral contact
constraints, the so-called time-stepping approach has proven its efficiency and robust-
ness [10], [19]. The time-stepping method permits us to study various kinds of mechan-
ical systems in civil engineering (granular materials), dynamics of machines (turbine
blade dampers), robotics (walking robots), and mechanisms (electrical circuit-breakers).
However, unilateral contact between an object with a flat side of rounded contour and a
plane, like that of a bottle on a table, is still a topic of research. Such a type of contact
can for instance be found in grinding machines and the transportation of cylindrical
objects on a conveyor belt. Systems with such a type of contact undergo a specific type
of motion, as is described by a scientific toy called the “Euler Disk.” The Euler disk
consists of a metal disk, about 75 mm in diameter and 12 mm thick, which can spin
on a slightly concave mirror, called the support. More commonly, a similar kind of mo-
tion, although with more damping, is that of a coin spinning on a table. This type of
motion involves an energy decrease to zero in a finite time accompanied by a certain
kind of singularity. In the course of the motion, both the inclination of the disk with
respect to the support and its angular velocity decrease to zero, while the relative ve-
locity of the contact point with respect to the disk tends to infinity in the final stage of
the motion. The spinning disk on a flat support, which constitutes the simplest example
of this specific type of motion regarding the shape of the body, has often been dis-
cussed theoretically since the nineteenth century up to now [3], [4], [7], [11], [15], [16],
[21], [24].

O’Reilly [21] studies the dynamics of the “rolling disk,” a disk which is purely
rolling without dissipation, and of the “sliding disk,” a disk without friction. Follow-
ing Appell [3], Chaplygin [6], and Korteweg [12], O’Reilly is able to find closed-form
solutions using Legendre functions of complex degree. Bifurcation diagrams are pre-
sented in [21], but the bifurcation parameters (A and B) are very hard to interpret
physically.

Kessler and O’Reilly [11] discuss the dynamics of the Euler disk under the influence of
dissipation. A friction model is taken into account which models sliding friction as well
as a form of rolling friction and drilling friction (but the different kinds of dissipation
are uncoupled). The sliding friction model has a static and a dynamic friction coeffi-
cient, and the numerical results therefore show stick-slip-like behaviour. The numerical
simulations show an asymptotic energy decrease, i.e., the disk does not stop in finite
time.
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In this paper we are interested in the dynamics and numerical treatment of a rolling
disk on a flat support. The objective of the paper is twofold:

1. To develop a numerical model which is able to simulate the dynamics of a rolling disk
taking into account
(a) unilateral contact with a flat rigid support,
(b) collisions, stick-slip transitions, and other frictional effects between disk and

support,
(c) motion without contact, motion with rim-support contact, motion with face-

support contact (i.e., “motion in the plane”) and transitions from one to the other,
(d) a nonsingular parameterization of the disk;

2. To study the dynamics of a rolling disk
(a) by the numerical model developed in 1 for various frictional dissipation mecha-

nisms (resistance against sliding, pivoting, and rolling),
(b) by an analytical study,
(c) considering experimental results available in literature.

In Section 2, we present a mechanical model of a rolling disk in the framework of
nonsmooth dynamics and convex analysis [5], [8], [14], [18]. We use Euler parameters
(quaternions) for the description of the orientation of the disk. We model the disk with
three unilateral contact constraints of the type point-surface in order to simulate a static
equilibrium of the disk lying horizontally on the support as well as motion in the plane.
The constitutive laws associated with the frictional unilateral contact constraints are
set-valued force laws that account for resistance against sliding, pivoting, and rolling.

A numerical algorithm of the time-stepping type is briefly presented in Section 3. The
numerical results, obtained with various combinations of frictional dissipation models,
are presented in Section 4. An analytical study of the rolling motion of a disk is given
in Section 5. Approximations are derived for the energy decay of the system during the
final stage of the motion for various kinds of frictional dissipation models. Finally, the
numerical and analytical results are discussed and compared with experimental results
available in literature (Section 6).

2. Mechanical Model

For displaying various terms in the three-dimensional Euclidean space, we use the fol-
lowing notation. Different points are denoted by uppercase roman symbols, such as A or
B. The displacement of point B relative to a frame in point A is expressed by the vector
rAB . The term vB denotes the velocity of point B, i.e., vB = ṙAB if A is not moving.
Only orthonormal frames are used, which we write as C = (B, eC

x , eC
y , eC

z ). The angular
velocity of frame C relative to another frame D is denoted by ωDC . The angular velocity
of a body is thus ω I B , if B denotes a body-fixed frame and I is an inertial frame. The
components of a vector a associated with a frame D are denoted Da. For example, IωDC

would then be the 3-tuple of the angular velocity of frame C relative to frame D, ex-
pressed in the inertial frame I . Differentiation with respect to time is indicated by a dot.
For example, B ṙAD means d

dt (BrAD), i.e., the three entries of BrAD are differentiated with
respect to time. The velocity BvD of point D written down in frame B is then obtained
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Fig. 1. Mechanical system.

by Euler’s formula BvD = B ṙAD + Bω I B × BrAD , if A is not moving and I denotes the
inertial frame. The general version of Euler’s formula reads B(ȧ) = B ȧ + Bω I B × Ba
and is applied in Section 5 on the linear momentum p̄ and on the angular momentum N̄S .

The mechanical system under consideration consists of a disk�with radius r , mass m,
and centre of mass S, which can be in contact with a table during its motion. The system
is modelled as simply as possible, in order to show only the main physical phenomena of
interest, and the disk is therefore considered to be infinitely thin. Both the disk and table
are considered to be perfectly rigid. An absolute coordinate frame I = (O, eI

x , eI
y, eI

z ) is
attached to the table, and a body fixed coordinate frame B = (S, eB

x , eB
y , eB

z ) is attached
to the disk such that eB

z is the axis of revolution (see Figure 1). The disk has principal
moments of inertia A = B = mr2

4 and C = mr2

2 with respect to S along the axes
(eB

x , eB
y , eB

z ) respectively. The inertia tensor of the disk with respect to the centre of mass
S is denoted by ΘS . Gravity is denoted by g.

2.1. System Parametrization

The disk is allowed to undergo arbitrary rotations. Every description of the orientation
of a rigid body based on three parameters includes a singularity for some orientation.
We therefore parameterize the orientation of the disk with Euler parameters (unit quater-
nions).

For each possible configuration of the body, the absolute orientation of � may be
defined by the coordinate transformationR : (eI

x , eI
y, eI

z ) �→ (eB
x , eB

y , eB
z ), which can be

accomplished by a finite rotation of an angle χ around an axis that is specified by the
unit vector n. We denote by ni the three components of I n, i.e., the three components
of n in the basis (eI

x , eI
y, eI

z ). Each rotation (n, χ) is associated with a unit quaternion,
represented in the following by the 4× 1 tuple p of which the components, e0 = cos χ2
and ei = ni sin χ

2 for i = 1, 2, 3, are called the Euler parameters [22]. We will use the
abbreviation e = [e1, e2, e3 ]T. The Euler parameters fulfill the relationship

pTp = 1, with p = [e0 eT
]T
. (2.1)
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The rotation transformation R, which identifies with a linear mapping with associated
matrix R = [Ri j ] = (2e2

0 − 1)I3 + 2(eeT + e0ẽ), relates the global components I s of a
vector s to its local components Bs as I s = R Bs. We introduce the following two 3× 4
matrices H and H̄ such that

H = [−e ẽ+ e0I
]
, H̄ = [−e −ẽ+ e0I

]
, R = HH̄T, (2.2)

with ãb = a× b, in which ã is a skew-symmetric matrix. We parameterize the body �
using a set of seven generalized coordinates composed of three translational coordinates,
which are the absolute coordinates of the centre of mass S (represented by I rO S), and four
rotational coordinates, which are the Euler parameters (represented by p). Introducing
the generalized coordinate vector

q =
[

I rO S

p

]
∈ R7, (2.3)

a Lagrangian description of the motion can be written in the form

∀ M ∈ �, I rO M (q) = I rO S + R BrSM . (2.4)

Equation (2.4) must be considered together with the constraint (2.1). The differentiation
of the relation (2.4) leads to the Eulerian description of the motion

∀ M ∈ �, I ṙO M = I ṙO S + Ṙ BrM S, (2.5)

with the relations

Ṙ = I ω̃ I BR, Ṙ = RBω̃ I B, (2.6)

where ω̃ I B is the skew-symmetric operator associated with the absolute angular velocity
of the body ω I B . Subsequently, we introduce the generalized velocity vector u, which
gathers the absolute coordinates of the global velocity of the centre of mass I ṙO S and
the local coordinates of the absolute angular velocity vector Bω I B ,

u =
[

I ṙO S

Bω I B

]
∈ R6. (2.7)

In the following, we will use the following relationships between the angular velocity
vector and the derivative of the Euler parameters [22]:

Iω I B = 2Hṗ, 2ṗ = HT
Iω I B, (2.8)

Bω I B = 2H̄ṗ, 2ṗ = H̄T
Bω I B, (2.9)

where the components of ṗ are not independent according to relation

pTṗ = 0, (2.10)

deduced from the differentiation of (2.1).
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Fig. 2. Contacts point C1, C2, and C3.

2.2. Contact Kinematics

During the time-evolution of the system, the disk can be in contact with the table. The
unilateral contact between disk and table is assumed to be of the type point-surface. A
single contact constraint is not able to describe the static equilibrium of a disk lying
horizontally on the table. We therefore model the disk with three unilateral contact con-
straints. For an arbitrary configuration of the disk, we define three points on the contour
of the disk which are candidates to contact. Subsequently, we derive the normal gap func-
tions gN j (q) associated with the three unilateral contact constraints under consideration
( j = 1, 2, 3). It must hold that gN j (q) ≥ 0 to avoid penetration.

2.2.1. Derivation of Gap Functions. We first consider a nonhorizontal configuration
of the disk (R33 = 1). We define the point C1 as the point on the contour of the disk
which has a minimal height with respect to the plane of the table. If the disk is above
the table, then C1 is the closest point to the table. Let eK

x be a unit directional vector of
the intersection line of the plane � of the disk and the horizontal plane (S, eI

x , eI
y) (see

Figure 2a):

eK
x = −

eI
z × eB

z

‖eI
z × eB

z ‖
with ‖eI

z × eB
z ‖ =

√
1− R2

33. (2.11)

The direction in the plane � with the largest inclination with respect to the plane
(S, eI

x , eI
y) is characterized by the unit vector eK

z

eK
z = −eB

z × eK
x =

1√
1− R2

33

(
eI

z − R33eB
z

)
. (2.12)

The point C1 on the contour of the disk that has a minimal height with respect to the
plane is defined by

rSC1 = −r eK
z . (2.13)
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Based on the definition of C1, we introduce two other points, C2 and C3, on the contour
of the disk, which are candidates of contact (Figure 2b):

rSC2 = −
1

2
rSC1 +

√
3

2

(
eB

z × rSC1

)
, rSC3 = −

1

2
rSC1 −

√
3

2

(
eB

z × rSC1

)
. (2.14)

The points C1, C2, and C3 fulfill the equation rSC3 = −rSC1 − rSC2 . The gap functions
gN j , associated with the three contact points Cj , with rCj = rS + rSCj , are defined as
gN j (q) = eI

z · rCj ( j = 1, 2, 3) and can be expressed in the form

gN1(q) = zS − r
√

1− R2
33, gN2(q) = gN3(q) = zS + r

2

√
1− R2

33. (2.15)

The functions gN j (2.15) are continuous functions in q.
If the disk is parallel to the table, then the proximal point cannot be uniquely defined

because all points on the disk have the same height zS , and the configuration is said to
be singular. In this case (R33 = 1, gN1 = gN2 = gN3 = zS), the functions rSCj (q)
( j = 1, 2, 3), given by the relations (2.13) and (2.14), are not defined. The points C1,
C2, and C3 can therefore, a priori, be chosen arbitrarily on the contour of the disk,
while fulfilling (2.14). When, at a time-instant t∗, the disk passes a horizontal singularity
position during its motion, we define the points C1, C2, and C3 by the continuity condition
r+SCj

(t∗) = r−SCj
(t∗) for j = 1, 2, 3, where the upper indices + and − denote the right

and left limit at t∗ with respect to time t . A particular case is discussed in Section 2.2.2.

2.2.2. Derivation of Relative Velocities at the Contact Points. Consider the con-
strained motion of the disk, such that it is in contact with the table at a single point C1

(gN1 = 0, gN2 = gN3 > 0). The point C1, defined by equation (2.13), moves during
the time-evolution of the system along the contour of the disk such that it remains the
proximal point on the contour with respect to the table. The absolute velocity of point
C1 is obtained by differentiation of rOC1 = rO S + rSC1 ,

BvC1 = BvS + Bω I B × BrSC1︸ ︷︷ ︸
B vP1

+B ṙSC1 . (2.16)

The term BvP1 represents the absolute velocity of the body-fixed point P1, which at time-
instance t coincides with point C1. The second term, B ṙSC1 = −r B ėK

z , corresponds to
the velocity of point C1 relative to the disk. For each nonhorizontal configuration of the
disk (R33 = 1), the coordinate transformation B = (eB

x , eB
y , eB

z ) �→ K = (eK
x , eK

y , eK
z ) is

a rotation ψ around axis eB
z . It therefore holds that B ėK

z = BωBK ×B eK
z = ψ̇ BeK

x , from
which follows B ṙSC1 = −rψ̇ BeK

x . In addition, by differentiation of BrSC1 (see (2.12)
and (2.13)), we obtain

B ṙSC1 = −r
Ṙ32 R31 − Ṙ31 R32

1− R2
33

BeK
x . (2.17)

By using the second equation in (2.6), we derive the following expression for ψ̇ :

ψ̇ = Ṙ32 R31 − Ṙ31 R32

1− R2
33

=
[

R31 R33

1− R2
33

R32 R33

1− R2
33

− 1

]
Bω I B . (2.18)
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We now introduce a number of velocity quantities for the relative kinematics of the
interacting bodies. We first define the time-derivative of the gap function gN1. Using the
notation γN1 = ġN1 with gN1 = eI

z · rC1 , and considering (2.16) and (2.17), it holds that

γN1 = eI
z · vC1 = eI

z · vP1 = żS − (I eI
z )

T
I r̃SC1 R Bω I B . (2.19)

That is to say, when gN1 = 0, γN1 represents the relative velocity of the interacting
bodies in the direction eI

z normal to the contact plane (eI
x , eI

y). Secondly, we define the
tangential relative velocity γT 1 of the interacting bodies at contact point C1 as a 2-vector
of which the elements are the first two components of I vP1 ,

γT 1 =
[

ẋS − (I eI
x )

T
I r̃SC1 R Bω I B

ẏS − (I eI
y)

T
I r̃SC1 R Bω I B

]
. (2.20)

The relative spin vector of the interacting bodies, ωspin, is a vector normal to the contact
plane

ωspin = ωspin eI
z , with ωspin = ω I B · eI

z . (2.21)

Furthermore, we introduce the spin velocity γτ1 as the product of the relative spin ωspin

and some quantity ε1,

γτ1 = ε1 ωspin = ε1(I eI
z )

T
Iω I B, (2.22)

where ε1 is an assumed radius of a hypothetical circular contact area in the (eI
x , eI

y)-plane.
Lastly, we define the relative “rolling” velocity γR as the product of minus the radius of
the disk and ψ̇ (2.18),

γR1 = −r ψ̇ = r

[−R31 R33

1− R2
33

−R32 R33

1− R2
33

1
]

Bω I B . (2.23)

Subsequently, we treat the situation for which the disk, while being in contact, passes
a horizontal singularity position at instant t� and thereafter moves in the plane of the table
(gN1 = gN2 = gN3 = 0, and thus R33 = 1). At such a time-instant t�, relations (2.13),
(2.14) do not hold, and the points C1, C2, C3 are defined by the continuity condition

r+SCj
(t�) = r−SCj

(t�), j = 1, 2, 3 , (2.24)

in which r−SCj
(t�) is considered to be known (an approximation will be given by the time-

stepping scheme; see Section 3). During the subsequent time-evolution (in the plane of the
table), the three points C1, C2, C3 are considered to be fixed to the disk. Consequently, the
relative velocities γR j , j = 1, 2, 3 are considered to be zero. According to the definition
gN j = eI

z · rCj , the time-derivative of the gap functions γN j = ġN j ( j = 1, 2, 3) are
defined by expressions of the form (2.19). Similarly, γγT j and γτ j ( j = 1, 2, 3) are
defined by expressions of the form (2.20) and (2.22), respectively.
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Summarizing, for arbitrary configurations of the disk, we can write the relative ve-
locities γN j , γγT j , γτ j , and γR j , for j = 1, 2, 3, as affine functions of u,

γN j = WT
N j u, WN j =

[
(I eI

z )
T −(I eI

z )
T

I r̃SCj R
]T
,

γγT j = WT
T j u, WT j =

[
(I eI

x )
T −(I eI

x )
T

I r̃SCj R
(I eI

y)
T −(I eI

y)
T

I r̃SCj R

]T

,

γτ j = WT
τ j u, Wτ j =

[
0 εj (I eI

z )
TR
]T
,

γR j = WT
R j u, WR1 =




r

[
0 0 0

−R31 R33

1− R2
33

−R32 R33

1− R2
33

1

]T

, only contact 1 active

0, else

WR2 = WR3 = 0.

(2.25)

It can be demonstrated that WN1, WN2, WN3 are three linearly independent vectors,
which is of importance especially when dealing with noninterpenetration constraint
violations (Section 3.3). Subsequently, we present the contact laws associated with the
three unilateral constraints introduced above.

2.3. Constitutive Laws

Associated with each of the relative velocities γγ in (2.25) are forces λ as their dual
entities, for which we now introduce certain constitutive laws. These constitutive laws
regard unilateral contact, Coulomb-Contensou friction, as well as rolling friction, and
are formulated as set-valued interaction laws in the framework of convex analysis by
applying the concept of the normal cone. The index j , used in the previous Section 2.2
to label the contact constraints, is omitted for brevity in the following.

2.3.1. Contact in Normal Direction: Signorini Condition. We assume Signorini’s
law to hold in the normal direction associated with a unilateral constraint

gN ≥ 0, λN ≥ 0, gN · λN = 0, (2.26)

where λN represents the normal contact force. Within the context of nonsmooth dynam-
ics, we have to allow for temporal discontinuities, e.g., velocity jumps usually associated
with collisions. The generalized velocity vector u is assumed to be a function of locally
bounded variation on the time-interval T of interest [17]. Such a function possesses a
left limit u−(t) and a right limit u+(t) at every time-instance t ∈ T . Similarly, a left and
right limit exist for the relative velocity γN (2.25) considering WN to be a continuous
function of time. For a time-instance t for which gN = 0 and λN admits a right limit, it
follows from (2.26) that

γ+N ≥ 0, λ+N ≥ 0, γ+N · λ+N = 0, (2.27)
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which is Signorini’s condition on velocity level. This complementarity condition consti-
tutes a contact law of a prospective type in the sense of Moreau. Therefore, it is possible
to invoke the Viability Lemma [20] and to prove that if (2.27) is satisfied for almost every
time-instance t ∈ T , and if gN ≥ 0 at the initial time-instance t0, then the noninterpen-
etration of the interacting bodies is satisfied for all t ∈ T succeeding t0. Using concepts
of convex analysis, we can write (2.27) in the form

− γ+N ∈ NCN (λ
+
N ), (2.28)

where NCN (λ
+
N ) is the normal cone to CN at λ+N , with CN := R+.

2.3.2. Coulomb-Contensou Friction. Drilling friction is taken into account by using
the Coulomb-Contensou friction model [13]. The Coulomb-Contensou friction model
describes the coupled behaviour of spatial sliding friction and drilling friction. The tan-
gential friction forceλT and the normal drilling torque τN are derived from a nonsmooth
scalar convex (pseudo) potential (dissipation function) expressed in terms of the sliding
velocity γγT and spin ωspin. We assume that the disk locally deforms in the vicinity of
a contact such that it has a circular contact surface with radius ε in the contact plane.
Moreover, we consider a parabolic normal pressure distribution over the contact area.
The Coulomb-Contensou friction model reads for a persistent contact as

− γγF ∈ NCF (λF ), (2.29)

in which

λF=
[
λT

λτ

]
with λτ = τN

ε
, γγF=

[
γγT

γτ

]
=WT

F u with WF=
[
WT Wτ

]
. (2.30)

The convex set CF , shown in Figure 3, is defined as follows:

CF :=




{
λT , λτ

∣∣∣∣ 9

64

(
η

η∗

)2

+ 9

8

(
ξ

ξ ∗

)2

− 243

1024

(
ξ

ξ ∗

)4

− 729

32768

(
ξ

ξ ∗

)6

+ O

((
ξ

ξ ∗

)8
)
≤ 1

}
, ξ ≤ ξ ∗

{
λT , λτ

∣∣∣∣ξ 2 + 5η2 − 75

7
η4 + 1250

147
η6 + O(η8) ≤ 1

}
, ξ > ξ ∗

(2.31)

with

ξ = ‖λT ‖
µFλN

, η = λτ

µFλN
, ξ ∗ = 9

32
π, η∗ = 9

128
π. (2.32)

The coefficient of friction in the Coulomb-Contensou friction model is denoted by µF

and is in general a function of γγF . It is important to realize that the frictional sliding
force λT and the normalized drilling torque λτ are coupled by the Coulomb-Contensou
friction law (2.29). If both the sliding velocity γγT and spin ωspin are identically zero,
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Fig. 3. Friction ball CF .

then this case is referred to as “stick.” If either the sliding velocity γγT or the spin ωspin

is nonzero, then the contact is in “slip.”
In the case of a persistent contact, the ratio ‖γγT ‖/µFλN is a strictly increasing smooth

function of ‖γγT ‖/γτ for nonzero values of γτ = εωspin = 0. Similarly, the ratio λτ /µFλN

is a strictly increasing smooth function of the ratioγτ /‖γγT ‖ for nonzero values ofγγT = 0.
For example, this means that ‖γγT ‖ decreases when γτ increases for fixed values of γγT

and µFλN . This physical effect can be demonstrated by an electric polishing machine
used to clean floors. The machine is hard to move when the brushes are not rotating but
can easily be pushed over the floor with rotating brushes.

2.3.3. Contour Friction. Classically, the resistance against rolling of two interacting
bodies is modelled by Coulomb’s law of rolling friction [23]. This set-valued force law
relates a frictional couple transmitted by the contact to the relative velocity of rotation
of the two interacting bodies. However, the classical rolling friction law is ambiguous
and can lead to contradictions. Here, we will employ another type of rolling friction law,
which models resistance against the movement of the contact point along the contour of
the disk. We refer to this rolling friction law as the contour friction model throughout
this paper. The contour friction model for a persistent contact relates the relative (rolling)
velocity γR to a force λR opposing the movement of the contact point along the contour
of the disk

− γR ∈ NCR (λR), (2.33)

in which CR := {v ∈ R | |v| ≤ µRλN }.

2.3.4. Constitutive Laws as Projections. Using the orthogonal projection operator
proj, the force laws (2.28), (2.29), and (2.33) introduced above can be written in the
equivalent form [1]:

λX j = projCX j
(λX j − ρX γγX j ), ρX > 0 arbitrary, (2.34)

for X = N , F, R and j = 1, 2, 3.
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2.4. Nonsmooth Dynamics

The absolute configuration of the system has been parameterized by the generalized
coordinates

q =
[

I rO S

p

]
∈ R7, (2.35)

as defined in Section 2.1. Let us consider a time-interval T of the motion, not necessarily
compact, of the form T = [t0, te] or T = [t0,∞[. A motion of the system is described
by a mapping t ∈ T �→ q(t) ∈ R7, which is assumed to be locally absolutely continuous
on T . Consequently, there exists a function v : T �→ R

7, locally Lebesgue integrable,
which permits us to obtain q by integration

∀t ∈ T, q(t) = q(t0)+
∫ t

t0

v(σ ) dσ. (2.36)

The time-derivative of the Euler parameters p in terms of the angular velocity vectorω is
given by (2.9). The function v ∈ R7 is related to the generalized velocity vector u ∈ R6

by the relation

v(t) = F(q(t)) u(t), F =
[

I3 0
0 1

2 H̄T

]
, (2.37)

where F is a continuous function of q. In the context of smooth dynamics, we require the
mapping t �→ u(t) to be locally absolutely continuous on T , which permits us to refer
to its derivative u̇(t). The time-evolution of the system is governed by the differential
equation of smooth dynamics

M(q)u̇− h(q,u)−
∑

j

rj = 0, (2.38)

with M = diag(mI3, BΘS), BΘS = diag(A, A,C),

h = [0 0 −mg −Bω̃ I B BΘS Bω I B
]T
.

Due to the definition (2.7) of u, the mass matrix M ∈ R6×6 of the system, being symmet-
ric and positive definite, is diagonal and constant with respect to q. The vector h ∈ R6

contains all smooth forces/moments in the system, such as gyroscopic forces and mo-
ments and gravitation. The terms rj , j = 1, 2, 3, represent the generalized components
of the contact forces

rj = Wj λj . (2.39)

We have to consider the noninterpenetration constraints (gN j (q) ≥ 0 ( j = 1, 2, 3)) and
the constraint (2.1) on the Euler parameters together with the differential equation (2.38).
Moreover, we have to add the constitutive laws for the unilateral frictional constraints
defined in Section 2.3.

Within the context of nonsmooth dynamics (which we adopt), velocity jumps may oc-
cur, which are usually associated with collisions. The generalized velocity is considered
to be a function t �→ u(t) of locally bounded variation on T [17], i.e., u(t) ∈ lbv(T,R6).
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The function u(t) therefore admits a left and right limit for all t ∈ T , and its derivative
u̇(t) exists for almost all t ∈ T : The discontinuity points of u constitute an at most
countable set being therefore Lesbesgue negligible.

However, the derivative u̇, pointwise defined, does not generally permit us to obtain u
by Lebesgue integration. Instead, we use the Stieltjes (also called differential) measure
du. In this paper, we assume that the measure du can be decomposed in the form

du = u̇ dt + (u+ − u−) dη, (2.40)

in which dt denotes the Lebesgue measure and dη denotes the atomic measure. For each
compact subinterval [t1, t2] of T , it holds that∫

[t1,t2]
du = u+(t2)− u−(t1), (2.41)

which is even true for t1 = t2, ∫
{t1}

du = u+(t1)− u−(t1), (2.42)

which is the velocity jump at t1. The usual equation of motion, which relates acceleration
to forces, is not suited to describe nonsmooth motion. We replace the equation of motion
on acceleration level by an equality of measures in R6

M(q) du = h(q,u) dt +
∑

j

dsj , (2.43)

which holds on T . The contact efforts are not represented anymore by forces λj , but by
contact impulsion measures. These contact impulsion measures are (for homogeneity
reasons) denoted by dSj , without paying attention to any function Sj , admitting dSj as
differential measure. The generalized components of dSj are defined by

dsj = Wj dSj ∈ R6, (2.44)

assuming t �→ Wj (q(t)) as continuous functions on T . Similar to the decomposition of
du, dSj is decomposed in

dSj = λj dt + Pj dη, (2.45)

in whichλj are the Lebesgue-measurable forces at contact point Cj and Pj are the purely
atomic impact impulsions (percussions). The nonsmooth equation of measures (2.43)
allows us to formulate in a uniform manner the smooth and nonsmooth phases of motion.
On each compact subinterval [t1, t2] of T , the time-evolution of the generalized velocities
u is governed by the following relation:∫

[t1,t2]
M du =

∫ t2

t1

h dt +
∫

[t1,t2]

∑
j

Wj dSj , (2.46)

which is a balance of impulsions on the time-interval [t1, t2]. To this equation we have
to add the constitutive laws associated with the unilateral frictional constraints. To be
consistent with the formulation on impulse level, we state the constitutive laws between



40 C. Le Saux, R. I. Leine, and C. Glocker

contact impulsions Λj =
∫ t2

t1
dSj and velocity quantities (see Section 3). The time-

evolution of the generalized coordinates q can be obtained from (2.36). The generalized
coordinates have to fulfill the noninterpenetration constraints gN j (q) ≥ 0, ( j = 1, 2, 3)
and the constraint (2.1) on the Euler parameters.

3. Numerical Algorithm: Time-Stepping Approach

We now proceed to describe the numerical integration algorithm used for the simu-
lations of Section 4. The numerical integration algorithm is a so-called time-stepping
method [20], which is a time-discretization of the balance of impulsions (2.46).

3.1. Time Discretization

We discretize the time-interval T of the motion in discrete times ti , i = 1, 2, 3, . . .
with stepsize �t = ti+1 − ti . Consider a time-instance ti = tA at which the generalized
coordinates qA and uA are given and which are admissible with respect to the unilateral
constraints. We are interested in finding an approximant for the generalized coordinates
and velocities at time tE = tA+�t , respectively qE and uE. The algorithm first estimates
the generalized position at the midpoint tM = tA + 1

2�t by the relation qM = qA +
�t
2 F(qA) uA, with F defined by (2.37). The functions Wj (q(t)), assumed to be continuous

on T , are approximated on the interval [tA, tE] by the values WM j := Wj (qM), which
complies with the midpoint rule. The function h(q,u) is approximated on the interval
[tA, tE] by the value hM := h(qM,uA). Using the above approximants, the impulse
balance (2.46) over the interval [tA, tE] leads to the relation

M(uE − uA) = hM �t +
∑
j∈IN

WM j Λj , (3.1)

in which Λj denotes the contact impulsion over the interval [tA, tE] at contact point Cj .
The summation of generalized contact impulses in (3.1) has to run only on the set of the
contacts which are active on [tA, tE]. As an approximation, the set IN := { j | gN j (qM) ≤
0} is adopted. For each j ∈ IN , we state the constitutive laws (2.34) between contact
impulsions and velocity quantities in the general form(

ΛX = projCX

(
ΛX − ρX γγXE

)
, ρX > 0 arbitrary

)
j∈IN

, (3.2)

with

γγXE := γγX (qM,uE) = WT
XM uE, (3.3)

for X = N , F, R (see (2.25)), which corresponds in the case of an impact to a com-
pletely inelastic impact law. The frictional contact problem consists of the set of equa-
tions (3.1), (3.2), and (3.3), which is solved (see Section 3.2) for uE and the contact
impulsions Λj . The generalized coordinates at time tE are approximated by

qE = qM + �t

2
F(qM) uE. (3.4)
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We recognize in the integration scheme an implicit Euler rule for the generalized veloc-
ities and a midpoint rule for the generalized coordinates, which are, of course, coupled.
The above integration scheme solves the contact problem using constitutive laws on
velocity level. The unilateral constraints on position level as well as the unit norm con-
straint on the Euler parameters are in general not satisfied. A correction of the possible
violations will be discussed in Section 3.3.

3.2. Solving the Frictional Contact Problem

In this subsection we discuss a numerical solution method for the frictional contact
problem, which consists of the following set of equations:

M(uE − uA) = hM �t +
∑
j∈IN

WM j Λj ,

j ∈ IN :


 �N = projCN

(�N − ρN γNE)

ΛF = projCF (�N )
(ΛF − ρF γγFE)

�R = projCR(�N )
(�R − ρR γRE)




j

,
(3.5)

with

γNE = WT
NM uE, γγFE = WT

FM uE, γRE = WT
RM uE. (3.6)

The nonlinear problem (3.5), (3.6) may be solved with various numerical techniques
[20] [2]. Here, we proceed to briefly present a Modified Newton method [1] because of
its simplicity. The Modified Newton algorithm consists of the following steps:

1. For k = 0, give initial guesses for the contact impulsions: Λ(0)
j , j ∈ IN ;

2. Solve u(k+1)
E from M(u(k+1)

E − uA) = hM �t +
∑
j∈IN

WM j Λ(k)
j ;

3. Project the impulses on unilateral frictional conditions: do the projections

Λ(k+1)
N = projCN

(Λ(k)
N − ρN γγ

(k+1)
NE ), with γγ(k+1)

NE = WT
NM u(k+1)

E ,

Λ(k+1)
F = projCF (�N )

(Λ(k)
F − ρF γγ

(k+1)
FE ), with γγ(k+1)

FE = WT
FM u(k+1)

E ,

Λ(k+1)
R = projCR(�N )

(Λ(k)
R − ρR γγ

(k+1)
RE ), with γγ(k+1)

RE = WT
RM u(k+1)

E .

(3.7)

Repeat steps 2 and 3 until ‖Λ(k+1)
N −Λ(k)

N ‖ + ‖Λ(k+1)
F −Λ(k)

F ‖ + ‖Λ(k+1)
R −Λ(k)

R ‖ < ε,
where ε is user-defined tolerance. On the first integration step, the Modified Newton
iteration can start with Λ(0)

j = 0. For the subsequent integration steps, the value of the
impulses calculated at the previous integration step is a good initial guess for the next step
if no impact or stick-slip transition takes place. The choice of ρN , ρF , ρR influences the
rate of convergence of the Modified Newton algorithm. A general convergence, result of
the Modified Newton algorithm does not exist. In practice, a small value usually results
in a low convergence, and a large value may lead to divergence.

3.3. Constraint Violation

The time-stepping integration method solves the contact problem using constitutive laws
on velocity level. The unilateral constraints on position level as well as the unit norm
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constraint on the Euler parameters, gN j (q) ≥ 0 ( j = 1, 2, 3) and pTp − 1 = 0, may
not be satisfied at the end of the timestep t = tE. For this reason, the integration step
is completed with a correction step of the possible violations. We introduce the set of
violating contacts at time tE, IV := { j | gNE j < 0}, and define the vector of violating
gap function gV = {gN j }, j ∈ IV . The constraint violation functions are grouped in the
vector b defined as follows:

b =
[

gV

pTp− 1

]
. (3.8)

The correction step of the violations, which are supposed to be small, consists of replacing
qE by its proximal point, called qC , in the set � := {q | b(q) = 0}. Proximity must be
associated with a certain metric on R7. Let the matrix A(q) ∈ R7×7, associated with a
symmetric positive-definite bilinear form from R

7 × R7 into R, define such a metric.
Assuming that the violations of the constraints are small compared to the accuracy of
the integration scheme, and that the violations are of the same order of magnitude, we
adopt for simplicity the metric defined by the standard scalar product of R7, and take
A = I7. The correction step of constraint violations consists of solving the following
constrained optimization problem:

minimize 1
2 ‖x− qE‖2

subject to b(x) = 0.
(3.9)

Let L be the (ordinary) Lagrangian function associated with problem (3.9)

L(x,λ) = 1

2
‖x− qE‖2 + λTb(x), (3.10)

in which λ represents the vector of Lagrange multipliers associated with the constraints.
The stationarity conditions, which characterize a saddle point of L(x,λ), can be written
in the form

∇xL(x,λ) = x− qE + ∂bT(x) λ = 0,

∇λL(x,λ) = b(x) = 0, (3.11)

with

∂b =
[ {WT

N j }
0 0 0 2pT

]
, j ∈ IV . (3.12)

Thus, the problem consists of solving the set of nonlinear equations

x− qE + ∂bT λ = 0
⇔ G(x,λ) = 0,

b(x) = 0
(3.13)

for the unknowns (x,λ). Defining qC as a proximal point of qE on the set�with respect
to the chosen metric means that the vector qC − qE is an element of the subspace of R7

generated by the linearly independent column vectors of the matrix ∂bT(qC). The value
of ∂bT(qC) is assumed to be close to the value of ∂bT(qE). It is therefore possible to
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solve the problem (3.13) by a quasi-Newton method for which the tangent operator ∂G
is kept constant during the iterative process,

∂G =
[

I7 ∂bT(qE)

∂b(qE) 0

]
. (3.14)

4. Numerical Results

The numerical method described above has been used to simulate the time-evolution of
a rolling disk. Four simulations, each associated with a different friction model and the
same initial condition, have been conducted:

1. Simulation with only Coulomb friction: the Coulomb law is stated in the form (3.2),
with X = T , and CT := {v ∈ R2 | ‖v‖ ≤ µT�N };

2. Simulation with Coulomb and contour friction;
3. Simulation with Coulomb-Contensou friction;
4. Simulation with Coulomb-Contensou and contour friction.

The following dataset has been used for all simulations. Inertial properties: m = 0.3048
kg, A = B = 1.0716 × 10−4 kg m2, C = 2.1433 × 10−4 kg m2, g = 9.81 m/s2.
Geometrical properties: r = 3.75× 10−2 m. Contact properties: µT j = 0.3, µF j = 0.3,
εj = 2× 10−3 m, µR j = 0.3× 10−3, for j = 1, 2, 3. Initially, the disk is considered to
be in the plane (O, eI

x , eI
z ), which is orthogonal to the table. The disk interacts with the

table through contact point C1,which coincides with the origin O of the reference frame
I . The coordinate transformation (eI

x , eI
y, eI

z ) �→ (eB
x , eB

y , eB
z ) can be accomplished by a

finite rotation of an angle π
2 around the axis eI

x . Consequently, it holds that

q0 = q(t0) =
[
0 0 r cos

π

4
sin

π

4
0 0

]T
. (4.1)

At time-instant t0, the disk is rolling without sliding on the table. The angular velocity
of the disk is taken as a vector in the horizontal plane, more precisely, Bω I B(t0) =
‖ω‖ [sin δ 0 cos δ]T with ‖ω‖ = 10 rad/s and δ = 0.035 rad. The sticking condition
at the initial time-instant leads to a direct relation between the velocity of the centre of
mass S and the angular velocityω, i.e., I ṙS(t0) = −r‖ω‖ [cos δ sin δ 0]T. Consequently
the initial velocity of the system u0 = u(t0) reads as

u0 = ‖ω‖
[−r cos δ − r sin δ 0 sin δ 0 cos δ

]T
. (4.2)

The results of the four simulations are presented in a condensed form in the following
subsections together with some brief comments. The stepsize of the numerical scheme
is given the fixed value �t = 10−4 s for all simulations.

4.1. Simulation with Coulomb Friction

The results of the simulation with Coulomb friction (i.e., no Contensou or contour
friction) are presented in Figure 4. The graph (xS, yS) in the left column describes the
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Fig. 4. Simulation with Coulomb friction.

trajectory of the centre of mass S during the first 80 seconds of the motion. According
to graphs (t, gN ) and (t, ‖γγT 1‖), contact 1, which is the only active contact, remains
in a sticking state during the whole time-evolution. The motion of the disk is therefore
a pure rolling motion; thus, Coulomb friction acts as an anholonomic constraint. The
graph (t, ψ̇) is representative for the relative kinematics of the contact point with respect
to the disk: The magnitude ψ̇ , given by (2.18), defines the angular velocity of the contact
point C1 in its motion along the contour of the disk. It appears that this velocity remains
(quasi) constant and equal to the value ‖ω(t0)‖. The graph (t, β), β being the angle of
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nutation (Figure 8), shows that the rolling motion of the disk is accompanied by small
oscillations around the global motion of the disk. The pure rolling condition causes
the mechanical system under consideration to be conservative, as no dissipation due to
sliding can occur. However, the graph (t, T+V ) shows a decrease in the total mechanical
energy of the system. During the time-interval under consideration with �t = 10−4 s,
the numerical scheme dissipates 0.2% of the initial system energy. The numerical results
show the efficiency of the correction step of possible constraint violations, which has
been presented in Section 3.3 (see for example graph (t, gN )).

4.2. Simulation with Coulomb and Contour Friction

The results of the simulation with Coulomb and contour friction (i.e., no Contensou
friction) are presented in Figure 5. During the first 25 s of the time-evolution, the disk
rolls without sliding over the table. A part of the initial energy of the system is dissipated
due to the presence of contour friction during this time-interval, as illustrated in the graph
(t, T + V ). Subsequently, when the inclination of the disk reaches approximately the
value β = 0.45 rad, the disk slides laterally over the table during 0.5 s. The peak that can
be observed in the graph (t, ‖γγT 1‖) shows the large variations of the sliding velocity on
the corresponding short time-interval. The sliding motion causes a considerable decrease
in the inclination and in the total energy. At the same time, the angular velocity ψ̇ of
the contact point C1 with respect to the disk increases. During the subsequent period
25.5 s < t < 67 s, two distinct phases of motion can be identified. First, a phase of
sticking takes place on the time-interval 25.5 s < t < 32 s. During this period there is a
transfer from kinetic energy to potential energy. The inclination of the disk with respect
to the table increases (the disk becomes more upright), as shown in the graphs (t, gN )

and (t, β), whereas ψ̇ decreases. On the following time-interval 32 s < t < 67 s,
contact 1 switches successively between sticking and sliding states. The potential energy
of the system decreases and the velocity of the contact point C1 with respect to the disk
increases as the disk falls down. The angular velocity ψ̇ of C1 tends to infinity when
the disk approaches a horizontal configuration, and contour friction becomes the main
mechanism of energy dissipation. At the same time the angular velocity ω I B of the disk
tends to zero. At time t = 67 s, as contact 2 and 3 become active, the disk reaches a
horizontal equilibrium configuration. Parts of various graphs are indiscernible due to
high-frequency oscillations, which we discuss in Section 6.

4.3. Simulation with Coulomb-Contensou Friction

The results of the simulation with Coulomb-Contensou friction (i.e., no contour friction)
are presented in Figure 6. Immediately after t = 0 s, the disk starts to slide laterally
(and also to pivot), which leads to a decrease in the inclination of the disk and therefore
in the potential energy of the system (see graphs (t, gN ) and (t, β)). At time-instant
t = 0.4 s, when the nutation reaches the value β = 0.45 rad, the sliding velocity of
contact 1 highly increases and subsequently decreases on a short time-interval, as is
illustrated by the peak in the graph (t, ‖γγT 1‖). A high decrease in the friction torque τN

can be observed on this short time-interval, which is in agreement with the Coulomb-
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Fig. 5. Simulation with Coulomb and contour friction.

Contensou friction model (see Figure 6b in [13]). Consequently, the dissipated energy
is mostly due to the work done by the tangential contact force λT1 . It is to be noted that
in the previous case (simulation with Coulomb and contour friction) the rapid sliding
phenomenon happens for the same value of β, but at a much later time-instant t = 25 s.
During the subsequent part of the motion, in the presence of sliding and spinning, the rate
of dissipation diminishes as the spin of the disk reduces. The total energy of the system
seems to decrease asymptotically to zero. For an asymptotical decrease to zero, the disk
cannot reach a horizontal equilibrium configuration in finite time but only approaches
this equilibrium when time tends to infinity.
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Fig. 6. Simulation with Coulomb-Contensou friction.

4.4. Simulation with Coulomb-Contensou and Contour Friction

The results of the simulation with Coulomb-Contensou and contour friction are pre-
sented in Figure 7. The first part of the motion, including the peak in the sliding velocity
(see graph (t, ‖γγT 1‖)), is similar to the time-evolution calculated on this time-interval
with Coulomb-Contensou friction. The contour friction force λR1 is very small because
the contour friction coefficient µR1 is taken to be a small constant 3 · 10−4. Meanwhile,
the contour rolling velocity γR1 is rather small during this part of motion. The dissi-
pation due to contour friction is therefore small with respect to the dissipation due to
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Fig. 7. Simulation with Coulomb-Contensou and contour friction.

Coulomb-Contensou friction. As for the previous case (Coulomb-Contensou friction),
the dissipated energy is mostly due to the work done by the tangential contact force.
During the subsequent part of the motion, in the presence of sliding and spinning, the
inclination of the disk with respect to the table and its angular velocity fall down, whereas
the velocity of the contact point with respect to the disk C1 is strongly increasing (see
graphs (t, β) and (t, ψ̇)). When the disk approaches a horizontal configuration, the
contour rolling velocity γR1 tends to infinity, and contour friction becomes the main
mechanism of energy dissipation. At time t = 13.6 s, as contacts 2 and 3 become active,
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Fig. 8. Analytical analysis: (a) parametrization of the disk, (b) circular rolling motion.

the disk reaches a horizontal equilibrium configuration. Contour friction plays a crucial
role in the end phase of the motion and causes the disk to reach a horizontal equilibrium
configuration in a finite time.

5. Analytical Analysis of Rolling Motion

The simulations of the previous section reveal various dynamic effects. The consideration
of an analytical model of the pure rolling motion of the disk permits us to give an
interpretation of these dynamic effects and therefore contributes to a better understanding
of the dynamics of a rolling disk.

5.1. Analytical Model

The analytical model, presented here, describes the mechanical system under consid-
eration as a disk submitted to a bilateral contact constraint and a sticking condition at
contact point C1. We define a parametrization of the disk (x, y, α, β, γ ) as illustrated
in Figure 8a, which accounts for the bilateral contact constraint in normal direction. The
sticking condition at contact point C1 can be expressed by means of the two nonholo-
nomic scalar constraints

ẋ − yα̇ − r γ̇ = 0 and ẏ + x α̇ = 0. (5.1)

The conditions (5.1) permit us to express ẋ and ẏ as functions of α̇, β̇, and γ̇ . Subse-
quently, we write the equations of motion using the coordinates (x, y, α, β, γ ) and
minimal velocities (α̇, β̇, γ̇ ).
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First, we derive the angular velocity Kω I B and the velocity of the center of mass K vS

of the disk, by using frame K = (eK
x , eK

y , eK
z ),

Kω I B = α̇ K eR
z + β̇ K eK

x + γ̇ K eK
y K vS = Kω I B × K rC1 S

=

 0 1 0

sinβ 0 1
cosβ 0 0




︸ ︷︷ ︸
K J̄R


α̇β̇
γ̇


 , =


r sinβ 0 r

0 −r 0
0 0 0




︸ ︷︷ ︸
K J̄S


α̇β̇
γ̇


 . (5.2)

Note that frame K is not body-fixed, but moves along with the disk such that the eK
x -axis

remains parallel to the table.
Furthermore, we introduce the linear momentum K p̄ = mK vS and angular momentum

K N̄S = K ΘS Kω I B of the disk. Considering the parameters for the disk A = B = mr2

4

and C = mr2

2 , it holds that

K ( ˙̄p) = mr


 α̈ sinβ + γ̈ + 2α̇β̇ cosβ
−β̈ + α̇2 sinβ cosβ + α̇γ̇ cosβ
−β̇2 − α̇2 sin2 β − α̇γ̇ sinβ


 ,

K (
˙̄NS) = 1

4
mr2


β̈ − α̇2 sinβ cosβ − 2α̇γ̇ cosβ

2α̈ sinβ + 2γ̈ + 2α̇γ̇
α̈ cosβ + 2βγ̇


 . (5.3)

Subsequently, we apply the principle of virtual power for virtual velocities that are
compatible with the sticking condition. As the constraints are considered to be ideal,
only the action of gravity arises in the virtual power of external effort. The action of
the gravity on the disk is described by a force K F = mg̃r [0− sinβ − cosβ]T and a
momentum K MS = 0 with g̃ = g

r . From the principle of virtual power, follow the
projected Newton-Euler equations [8],

K J̄T
S

[
K ( ˙̄p)− K F

] + K J̄T
R

[
K (
˙̄NS)− K MS

]
= 0, (5.4)

which yield the equations of motion of the disk:

(5 sin2 β + 1)α̈ + 6γ̈ sinβ + 10α̇β̇ sinβ cosβ + 2β̇γ̇ cosβ = 0, (5.5)

5β̈ − 5α̇2 sinβ cosβ − 6α̇γ̇ cosβ − 4g̃ sinβ = 0, (5.6)

6α̈ sinβ + 6γ̈ + 10α̇β̇ cosβ = 0. (5.7)

5.2. Circular Rolling Motion

We now proceed to analyze a particular type of rolling motion. We consider the type of
motion (x0(t), y0(t), α0(t), β0(t), γ0(t)) for which x0 = 0 and β0 = const. (0 < β0 <

π
2 )

in time. It follows that ẋ0 = ẍ0 = 0 and β̇0 = β̈0 = 0. Consequently, the sticking
conditions (5.1) yield

ẏ0 = −x0α̇0 = 0 ⇒ ẏ0 = ÿ0 = 0 ; y0 = const. = R, (5.8)

ẋ0 = y0α̇0 + r γ̇0 ⇒ 0 = Rα̇0 + r γ̇0. (5.9)
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During such a motion, the inclination of the disk β0 with respect to the vertical eI
z and

the height of the center of mass are constant in time. As contact point C1 moves on
the contour of the disk (relative motion), it describes on the table (absolute motion) a
circular trajectory (O, R) of radius R around the origin O of the inertial frame (see
Figure 8). Equation (5.9) is the condition for pure rolling, which means that, for a given
time-interval of the motion, the arc lengths covered by the contact point C1 on both the
perimeter of the circle (O, R) and the perimeter of the disk are equal. In the following
we refer to such motion as circular rolling motion. Subtraction of (5.7)· sinβ0 from (5.5)
yields, together with β̇0 = 0, to α̈0 = 0. Consequently, it can be deduced from the pure
rolling condition (5.9) that both α̇0 and γ̇0 are constant in time for circular rolling motion.
In the following we define ρ (see Figure 8) as

ρ = r

R
. (5.10)

It follows from the equation of motion (5.6) and the pure rolling condition (5.9) written
as

α̇0 = −ργ̇0, (5.11)

that

γ̇ 2
0 =

4g̃ sinβ0

(6− 5ρ sinβ0)ρ cosβ0
, with 0 < ρ <

6

5 sinβ0
. (5.12)

Subsequently, we study a particular type of circular rolling motion for which, as the
disk is rolling on the table, the center of mass S remains on the axis (O, eI

z ). This type
of motion is characterized by

r sinβ0 = R ⇒ ρ sinβ0 = 1, (5.13)

which fulfills the restriction in (5.12). In this case γ̇ 2 and α̇2 can be written as

γ̇ 2
0 =

4g̃

ρ
√
ρ2 − 1

and α̇2
0 = ρ2γ̇ 2

0 =
4g̃ρ√
ρ2 − 1

. (5.14)

Considering (5.2) together with (5.11), (5.13), and (5.14) we deduce

‖ω I B‖2 = 4g̃

√
1− 1

ρ2
and vS = 0, (5.15)

which reveals that the center of mass S is immobile with respect to the inertial frame. We
call this type of motion stationary rolling motion. In the limit of β0 → π

2 , it holds that
ρ → 1. Consequently, it follows that α̇2

0 and γ̇ 2
0 → +∞ while ω I B → 0. The contact

point C1 therefore moves infinitely fast on the circle (O, R) with radius R → r , and
moves infinitely fast on the contour of the disk, while the disk practically does not rotate.

5.3. Small Oscillations around Circular Rolling Motion

In this subsection we study small oscillations around a circular rolling motion using a
harmonic balance method. We consider the motion to be composed of the circular rolling
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motion with superimposed harmonic terms of frequency ω,

α̇ = α̇0 + a cosωt, α̇0 = const,

β = β0 + b cosωt, β0 = const,

γ̇ = γ̇0 + c cosωt, γ̇0 = const, (5.16)

and with small amplitudes a � 1, b � 1, c � 1. Substitution of the Ansatz (5.16) in
the equation of motion (5.5) gives

− (
5 sin2(β0 + b cosωt)+ 1

)
aω sinωt − 6ωc sinωt sin(β0 + b cosωt)

− 10(α̇0 + a cosωt)ωb sinωt sin(β0 + b cosωt) cos(β0 + b cosωt)

− 2ωb(γ̇0 + c cosωt) sinωt cos(β0 + b cosωt) = 0.

Subsequently, we equate first-order terms in a, b, and c and divide by −ω sinωt

(5 sin2 β0 + 1)a + 6c sinβ0 + 10α̇0b sinβ0 cosβ0 + 2bγ̇0 cosβ0 = 0. (5.17)

Similarly, we substitute (5.16) in (5.6) and equate the first-order terms

bω2 = −2α̇0a sinβ0 cosβ0 + α̇2
0b(sin2 β0 − cos2 β0)

−6

5
(aγ̇0 + cα̇0) cosβ0 + 6

5
α̇0γ̇0b sinβ0 − 4

5
g̃b cosβ0. (5.18)

Considering (5.16) together with (5.7) and equating first-order terms yields

a sinβ0 + c + 5

3
α̇0b cosβ0 = 0. (5.19)

We now subtract (5.19)·6 sinβ0 from (5.17)

a cos2 β0 + 2bγ̇0 cosβ0 = 0 ⇒ a = − 2bγ̇0

cosβ0
, (5.20)

which gives the amplitude a as a function of b. Using (5.19) we find the amplitude c as
a function of b,

c = 2bγ̇0

cosβ0
sinβ0 − 5

3
α̇0b cosβ0. (5.21)

Substitution of (5.20) and (5.21) in (5.18) gives an expression for ω2

ω2 = α̇2
0 +

1

5
(14α̇0γ̇0 sinβ0 + 12γ̇ 2

0 − 4g̃ cosβ0), (5.22)

which is the frequency of small oscillations (5.16) around circular rolling motion. The
rolling motion of a vertical disk on a straight line (β0 = 0 and α̇0 = 0) is a special case.
For this kind of rolling motion, the frequency is ω2 = − 4

5 (g̃ − 3γ̇ 2
0 ), which is positive

for a large enough rotation speed γ̇0. If γ̇0 is not large enough, then the gyroscopic terms
are not able to make equilibrium with the gravitational terms, and the disk will fall.
Similarly, for stationary rolling motion we obtain (using (5.13) and (5.15))

ω2 = 4

5
g̃

4ρ2 − 1

ρ
√
ρ2 − 1

,

which is positive because ρ > 1 for stationary rolling motion.
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5.4. Feasibility of Circular Rolling Motion According to Coulomb’s Law

In Section 5.2, we considered circular rolling motion of the disk, which obeys the sticking
condition (5.1). Considering such a motion, we are interested to predict, according to
Coulomb’s law of dry friction, whether the disk can remain in a sticking state. First, we
derive from the Newton-Euler equations, the intensity ‖λT ‖ of the tangential force of
contact which acts in a circular rolling motion of the disk. The horizontal accelerations
of the center of mass S can be found as

xS = −(R − r sinβ0) sinα0 ⇒ ẍS = α̇2
0(R − r sinβ0) sinα0, (5.23)

yS = (R − r sinβ0) cosα0 ⇒ ÿS = −α̇2
0(R − r sinβ0) cosα0, (5.24)

where xS and yS are the first two components of I rO S(t) according to Figure 8, I rO S(t) =
[xS(t) yS(t) zS(t)]

T. It follows from the Newton-Euler equations that

mẍS = λT x , mÿS = λT y ⇒ ‖λT ‖ = m
√

ẍ2
S + ÿ2

S. (5.25)

The equations (5.23) and (5.24) together with (5.25) yield to

‖λT ‖ = m(R − r sinβ0)α̇
2
0 = m(R − r sinβ0)ρ

2γ̇ 2
0 , (5.26)

in which the pure rolling condition (5.11) has been used. The right-hand side of (5.26)
can be recognized as the centrifugal force. Subsequently, by substituting in (5.26) the
expression of γ̇ 2

0 given by (5.12), we obtain the intensity of the tangential contact force,
which acts in a circular rolling motion,

‖λT ‖ = m R(1− ρ sinβ0)
4ρ g̃ sinβ0

(6− 5ρ sinβ0) cosβ0
. (5.27)

Because in circular rolling motion the height zS of the center of mass is constant, it
follows from Newton’s law that the normal contact force opposes the gravitation, i.e.,
λN = mg. According to Coulomb’s law, for a friction coefficient µT > 0, a circular
rolling motion is feasible if ‖λT ‖ ≤ µTλN holds, i.e., if the indicator χ—

χ = (1− ρ sinβ0)
4 sinβ0

(6− 5ρ sinβ0) cosβ0

1

µT
(5.28)

—fulfills the condition

χ ≤ 1. (5.29)

5.5. Energy Decay during the Final Stage of Motion

In the beginning of this analytical analysis, we studied the circular rolling motion (without
dissipation) of a disk. As a special case, we focused on the stationary rolling motion, for
which the center of mass S remains immobile with respect to the inertial frame.

Section 4 shows the numerical simulation of a rolling disk for different types of friction
models. The numerical results, in terms of q(t) (2.3) and u(t) (2.7), can be expressed in



54 C. Le Saux, R. I. Leine, and C. Glocker

the parametrization (x, y, α, β, γ ) of the analytical model (see Figure 8). A number of
observations can be made concerning the simulations with Coulomb and contour friction,
Coulomb-Contensou friction and Coulomb-Contensou and contour friction (Sections 4.2
to 4.4). During the first phase of the motion, the disk rolls over the table much like the
circular rolling motion. However, the system is not conservative due to the presence of
friction, and the movement slowly changes. A short phase of rapid sliding occurs in the
simulation with Coulomb and contour friction when χ has grown up to a value of about 1
(see (5.28)). The simulations with Coulomb-Contensou friction and Coulomb-Contensou
and contour friction also show a peak of rapid sliding. We observe that the subsequent
time-evolution of the disk is, for these three different mechanisms of dissipation, much
like stationary rolling motion. As β tends to π /2, the center of mass hardly moves and
the relative sliding velocity becomes small. Moreover, the component ωx = β̇ of the
angular velocity along the axis eR

x (see Figure 8) becomes small when compared to the
component ωy = γ̇ cosβ along the axis eR

y .
In the following, we will study analytically the energy decay of a rolling disk for

various kinds of dissipation using the following standing assumptions for the type of
motion:

A.1 The center of mass is assumed to be almost immobile, i.e., ρ sinβ = 1.
A.2 We assume |β̈| � g̃ and |β̇| � |α̇| cosβ.
A.3 The sliding velocity is assumed to be small, i.e., α̇ = −ργ̇ .
A.4 We assume β to be close to π /2.

The analytically obtained energy decays for different kinds of dissipation will be com-
pared with the energy decay during the final stage of the motion of the corresponding
numerical simulations. With assumptions A.1–A.4, it follows from equation of mo-
tion (5.6) that (5.14) still holds approximately, i.e., γ̇ (t) = γ̇ (ρ(t)) and α̇(t) = α̇(ρ(t))
withρ(t) = 1/ sinβ(t). Subsequently, we derive the total energy of the system E = T+V
with

T = 1

2
mK vS

T
K vS + 1

2
Kω I B

T
K ΘS Kω I B

= 1

2
mr2

(
(α̇ sinβ+γ̇ )2+β̇2

)+ 1

2

(
Aβ̇2+C(α̇ sinβ+γ̇ )2+Aα̇2 cos2 β

)
,(5.30)

V = mgr cosβ. (5.31)

Using the above assumptions, we approximate the total energy by the expression

E = 1

2
Aα̇2 cos2 β + mgr cosβ, (5.32)

in which only the major terms have been taken into account. An expression for the energy
as a function of β

E = 3

2
mr2g̃ cosβ (5.33)

follows from the substitution of (5.14) and A = 1
4 mr2 in (5.32). In the following, we

express, for different kinds of friction models, the power as a function of energy, i.e.,
Ė = f (E). The corresponding power-energy relations define a time-evolution of the
system, which can be shown to verify the standing assumptions A.1–A.4.



Dynamics of a Rolling Disk in the Presence of Dry Friction 55

5.5.1. Contour Friction Model. First we consider a model of rolling friction called
contour friction (see Section 2.3.3), which relates the velocity of the contact point on the
contour of the disk γR to a friction force by relation (2.33). Considering the parametriza-
tion of the disk (x, y, α, β, γ ) introduced in Section 5.1, it holds that γR = −r γ̇ . If we
choose a dry contour friction law, as used in Section 2.3.3, then the dissipation rate reads
as

Ė = −µRλN |γR| = −rµRλN |γ̇ |. (5.34)

The assumptions A.2 and A.4 allow us to approximate the normal contact force with
λN = mg. We now have to express γ̇ as a function of E . Using (5.14), (5.33), and
ρ = 1/

√
1− cos2 β, it holds that

γ̇ 2 = 4g̃

ρ
√
ρ2 − 1

= 4g̃(1− cos2 β)

cosβ
=

4g̃

(
1−

(
2E

3mr2 g̃

)2
)

(
2E

3mr2 g̃

) . (5.35)

It follows from assumption A.4 that E � 3
2 mr2g̃, and we approximate (5.35) with

γ̇ 2 ≈ 6g̃2mr2

E
= α̇2. (5.36)

The dissipation rate Ė for dry contour friction can therefore be expressed as a function
of E ,

Ė = − a√
E
, E > 0, (5.37)

with a = √6µRm3/2g̃2r2 > 0 and constant. For an arbitrary initial condition E(t0) = E0,
the differential equation (5.37) obeys the solution

E(t) =
(

E
3
2
0 −

3

2
a(t − t0)

) 2
3

for t0 ≤ t ≤ t f , (5.38)

which shows (see the black line in Figure 9a) a decrease to zero in a finite time t f − t0 =
2E

3
2
0 /(3a).
If we consider a viscous contour friction modelλR = −cγR , in which c is the viscosity

parameter, then the dissipation rate reads as

Ė = −cγ 2
R = −cr2γ̇ 2. (5.39)

Using the approximation (5.36), similar to the above analysis, we deduce that

Ė = − a

E
, with a = 6cg̃mr3. (5.40)

For an arbitrary initial condition E(t0) = E0, the differential equation (5.40) obeys the
solution

E(t) = (E2
0 − 2a(t − t0)

) 1
2 for t0 ≤ t ≤ t f , (5.41)

which shows (see the grey line in Figure 9a) a decrease to zero in a finite time t f − t0 =
E2

0 /(2a).
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Fig. 9. Energy decay for (a) contour friction (dry = black, viscous = grey), (b) classical rolling
friction (dry = black, viscous = grey) and Contensou friction (dashed).

5.5.2. Classical Rolling Friction Model. Classically, the resistance against rolling of
two interacting bodies is modelled by (see [23]) a set-valued force law which relates the
orthogonal projection, on the contact plane, of the relative angular velocity of the bodies
ωR , to a tangential frictional couple MR , transmitted by the contact

− ωR ∈ NCR (MR) with CR := {v ∈ R2 | ‖v‖ ≤ µRλN }. (5.42)

Similar to the analysis conducted with the contour friction model, we study here the total
energy decrease for classical rolling friction. More generally, the set CR will be some
noncircular closed convex set corresponding to an anisotropic law. The projection of the
angular velocity vector on the contact plane ωR can be decomposed along the axis eR

x
and eR

y (see Figure 8)

ωR =
[
ωx

ωy

]
=
[

β̇

γ̇ cosβ

]
. (5.43)

The dissipation rate due to classical rolling friction reads as

Ė = −µRλN‖ωR‖. (5.44)

The assumptions A.1–A.4 allowed us to make the approximation

Ė = −µRλN |γ̇ | cosβ. (5.45)

Substitution of (5.33) and (5.36) gives Ė as a function of E

Ė = −a
√

E, with a = 2
√

6

3
µR g̃
√

m = const. > 0. (5.46)

For an arbitrary initial condition E(t0) = E0, the differential equation (5.46) obeys the
solution

E(t) =
(√

E0 − a

2
(t − t0)

)2
for t0 ≤ t ≤ t f , (5.47)
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which shows (see the black line in Figure 9b) a decrease to zero in a finite time t f − t0 =
2
√

E0/a.
If we consider a viscous classical rolling friction model MR = −cωR , then the

dissipation rate reads as

Ė = −c‖ωR‖2 = −cγ̇ 2 cos2 β, (5.48)

in which assumption A. 2 has been used and c is a viscosity parameter. Considering the
approximation (5.36), similar to the above analysis, we deduce that

Ė = −aE, with a = 8c

3mr2
. (5.49)

For an arbitrary initial condition E(t0) = E0, the differential equation (5.49) obeys the
solution

E(t) = E0e−a(t−t0) for t ≥ t0, (5.50)

which shows (see the grey line in Figure 9b) that an asymptotic behaviour of the energy
occurs. Consequently, a decrease to zero is therefore not achieved in a finite time.

5.5.3. Coulomb-Contensou Friction. We assume the sliding velocity γγT to be neg-
ligible. Consequently, the dissipation rate is due to work done by the drilling torque,
i.e.,

Ė = λτ · γτ , (5.51)

which according to (2.22) and the Coulomb-Contensou friction law (Section 2.3.2) leads
to

Ė = −3π

16
µF mg · ε|α̇ + γ̇ sinβ|, (5.52)

in which ε is the radius of the contact surface. Using (5.33), (5.36), ρ sinβ = 1, and
α̇ = −ργ̇ , we deduce that

Ė = −aE
3
2 , with a = π

√
2

4
√

3

µFε

r2
√

m
. (5.53)

For an arbitrary initial condition E(t0) = E0, the differential equation (5.53) obeys the
solution

E(t) =
(

1√
E0
+ a

2
(t − t0)

)−2

for t ≥ t0, (5.54)

which shows (see the dashed line in Figure 9b) an asymptotic behaviour of the energy.

6. Discussion of Analytical, Numerical, and Experimental Results

In this section we will discuss the analytical and numerical results (Sections 4 and 5)
and compare those with experimental results which can be found in the literature.
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The results of the simulation with Coulomb friction (Section 4.1) show that the pure
rolling motion of the disk is accompanied by small oscillations around the global motion
of the disk. An analysis of (possible) small oscillations in the vicinity of circular rolling
motion of the system is presented in Section 5.3. The consideration of a particular
harmonic solution (with frequency ω) of the analytical model of a rolling disk leads to
equation (5.22), which relates ω2 to the position and velocity parameters of the system.
The application of this relation, using the positions and velocities from the numerical
results, gives an almost constant frequencyω = 5.7 Hz. This value is in good accordance
with the frequency of the nutation, which can be observed in the graph (t, β) of Figure 4.
Therefore, these oscillations have a physical meaning and are not numerical artifacts.
Although the study presented in Section 5.3 is based on the consideration of a conservative
system, the relation (5.22) appears to give at each time-instant a good approximation for
the frequency of the small nutational oscillation (t, β) observed in the numerical results
for the (nonconservative) Coulomb and contour friction model (Section 4.2), Coulomb-
Contensou friction model (Section 4.3), and Coulomb-Contensou and contour friction
model (Section 4.4).

The analysis on the analytical model of Section 5.4 reveals that according to
Coulomb’s law, for a friction coefficient µT > 0, a circular rolling motion is feasible if
the indicator χ (5.28) fulfills the condition χ ≤ 1. The indicator χ has been evaluated
for each timestep of the numerical simulation with the Coulomb friction model (Sec-
tion 4.1). The parameter ρ, involved in the definition of χ , has been evaluated for each
timestep according to (5.11) by taking the computed values of α̇ and γ̇ . It appears that
the indicator χ remains smaller than 1, which agrees with the fact that no sliding occurs
during this simulation (see Figure 4). The time-evolution of χ for the simulation with
Coulomb and contour friction (Section 4.2) is shown in Figure 10. A good accordance
between χ(t) and γγT (t) can be observed. The sticking phases correspond to values of
χ < 1, and the sliding phases correspond to values of χ > 1. As mentioned in Sec-
tion 4.2, the last part of the motion, 32 s < t < 67 s, computed with Coulomb and
contour friction consists of short alternating stick and slip phases. For this part of the
motion, the indicator χ oscillates around the value χ = 1 (depicted by the dashed line
in Figure 10). The motion is much like stationary rolling motion, for which the center
of mass practically remains immobile (notice the point (−2.63,−1.89) in the (xS, yS)

graph of Figure 5) and for which the disk slowly flattens due to dissipation. Of course,
we have to bear in mind that χ has been defined for the analytical model with circular
rolling motion, under the assumptions that β̇ = 0, ẋ = 0, and pure rolling of the disk
(no slip of the contact point). The numerical simulations with Coulomb friction and
with Coulomb and contour friction are characterized by β̇(t) � 1, x(t) ≈ const. and
‖γγT (t)‖ � 1 for almost all t . The assumptions for circular rolling motion are therefore
approximately fulfilled, which explains the good accordance between the χ and γγT .
Consequently, the parameter χ is a useful tool to indicate whether the disk will remain
sticking.

In the analytical analysis of Section 5.5, we studied the energy decrease of a rolling
disk under the assumptions A.1–A.4 for various types of friction. If dry contour friction
is assumed, then the analytical analysis indicates that the energy decreases in a finite time
to zero, which is in accordance with the numerical simulation for Coulomb and contour
friction (see the (t, E) graph of Figure 5). Moreover, we checked that the profile of E(t)
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Fig. 10. Time-evolution of the indicator χ for simulation with Coulomb and dry
contour friction.

during the final stage of the corresponding simulation is indeed of the form (5.38). If
Coulomb-Contensou is assumed, then the analytical analysis indicates that the energy
decreases asymptotically to zero, which is in accordance with the numerical simulation
for Coulomb-Contensou friction (see Figure 6) and the profile of E(t) is indeed of the
form (5.54). Additional simulations, not presented here, show that the numerical results
for classical rolling friction are in accordance with the analytical results of Section 5.5.2.
Moreover, a classical rolling friction model was used by [11] for the simulation of a
rolling disk, and their numerical results show an asymptotic energy profile which is in
agreement with our analytical results. The final stage of the motion of the simulation
with Coulomb-Contensou and contour friction is similar in form to the final stage of the
simulation with contour friction. This can be understood from the analytical analysis
of the energy decay (Section 5.5): The dissipation rate Ė (5.37) due to contour friction
increases with decreasing energy E , while the dissipation rate Ė (5.53) due to Coulomb-
Contensou friction decreases with decreasing energy E . The final stage of the motion
with both Coulomb-Contensou and contour friction will therefore be dominated by the
dissipation due to contour friction.

Experiments on rolling disks have been performed by [15] and [7], both presenting
their results in terms of α̇(t). McDonald and McDonald [15] performed the experiment
on a single disk using a phototransistor. Easwar et al. [7] measured the movement of
steel disks and a steel ring on supports of various materials using a high-speed camera.
The experimental data of [15] and [7] can be described for the final stage of the motion
by a power law,

α̇(t) ∝ (t f − t)−
1

nexp . (6.1)

The experiments of [15] suggest that nexp = 4, and the experiments of [7] on various
disk/ring-support combinations suggest that 2.7 < nexp < 3.2.
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The analytical analysis of Section 5.5 leads to relation (5.36) between α̇ and E ,

α̇(t) ∝ E(t)−
1
2 ∝ (t f − t)−

1
nana . (6.2)

We now derive nana for those friction models of Section 5.5, which lead to an energy
decease to zero in a finite time. It follows from (5.38) that nana = 3 for the dry contour
friction model. Similarly, it holds that nana = 4 for viscous contour friction. Dry classical
rolling friction leads to nana = 1. If we now compare the experimental results with the
results from the analytical model, then dry or viscous contour friction could well explain
the energy decay of the experimental results. We therefore believe that contour friction
is indeed the dominant mechanism of dissipation during the final stage of the motion.
However, we have to keep in mind that (at least in theory) other dissipation mechanisms
might exist that lead to a similar energy decay.

7. Conclusion

In this paper a numerical model for a rolling disk has been developed, using a parametriza-
tion with Euler parameters, which is able to take into account the unilateral contact
constraints and different types of frictional models. The numerical model has proven its
capability to describe the motion of objects, with a flat side of circular contour, on a
plane. The numerical results seem to be reasonable for the chosen contact parameters,
but a fairly small stepsize has to be taken to properly describe the motion.

An analytical analysis of the energy decay during the final stage of rolling motion
has been performed in Section 5. The derived energy profiles for the different types of
frictional dissipation mechanisms agree well with the corresponding numerical energy
profiles. An energy decrease to zero in finite time occurs for dry contour friction and dry
classical rolling friction and, remarkably, for viscous contour friction. An asymptotic
decrease to zero of the energy occurs for viscous classical rolling friction and (dry)
Contensou friction. The analytical analysis of Section 5 gives a better understanding of
the behaviour of the disk during the last stage of the numerical simulations. A comparison
with available experimental results suggests that contour friction might very well be the
dominant mechanism of dissipation.

Goodwine and Stépán [9] study the control of the classical shimmying wheel by
feedback linearization techniques. Coulomb (sliding) friction was used by [9] to explain
the shimmying phenomenon. It would be of interest to study the classical shimmying
wheel under the influence of spatial Coulomb-Contensou friction, i.e., a combined sliding
and pivoting friction model. The interaction between pivoting and sliding might change
the stability of the nonholonomic system.

The results obtained in this paper may provide a good basis for numerical treatment of
more general dynamical multicontact problems involving interaction between cylindrical
and planar objects and the like.
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