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Abstract The aim of the paper is to develop a fully 3D simulation technique for rockfall
dynamics taking rock shape into account and using the state-of-the-art methods of multibody
dynamics and nonsmooth contact dynamics. The rockfall simulation technique is based on
the nonsmooth contact dynamics method with hard contact laws. The rock is modeled as
an arbitrary convex polyhedron and the terrain model is based on a high resolution digital
elevation model. A specialized friction law for rockfall is proposed which allows for the
description of scarring behavior (i.e., rocks tend to slide over the terrain before lift-off).
The influence of rock geometry on rockfall dynamics is studied through two well-chosen
numerical simulations.

Keywords Natural hazards · Nonsmooth dynamics · Unilateral constraint · Contact ·
Friction

1 Introduction

Rockfall is a serious natural hazard in mountainous areas and represents a major threat to in-
frastructure, transportation lines, and people (Fig. 1). The identification of potential rockfall
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Fig. 1 Rockfall incident at the
highway A2 near Gurtnellen,
Switzerland, on 31 May 2006
leading to two casualties (photo
Swiss Federal Roads Office)

starting zones, the calculation of the rock trajectories in complex three-dimensional terrain,
and the interaction of falling rocks with protection measures, such as rockfall dams, catching
nets, and mountain forests, are three major components of the rockfall problem and research.
These problems have become especially urgent, as warming trends in world climate are hav-
ing a significant impact on mountain permafrost, destabilizing rockfall starting zones [27].
Recent events have demonstrated that rockfall is also a dangerous secondary hazard after
extreme earthquakes.

Methods to predict rockfall trajectories in complex three-dimensional terrain (given an
unstable source area) have great practical value as they can be used to determine the danger
of rockfall run-out zones as well as dimension protection measures. However, the simulation
of a falling rock is extremely challenging because when a rock moves downslope, various
modes of motion are possible: free fall, sliding, rolling, and bouncing with slip or stick. The
run-out distance, lateral spreading and jump heights are strongly influenced by the shape of
the rock and the interaction with the terrain and other obstacles such as trees.

The present work is concerned with the development of a fully three-dimensional rigid-
body rockfall trajectory model that accounts for rock shape and, therefore, provides a more
accurate and physically consistent description of the rock–terrain interaction. For practical
usage, it is necessary to establish a computationally reliable model that employs constitutive
parameters, which characterize terrain surface properties such as hardness, scree content,
soil cover, and vegetation independent of rock size and shape. This would place rockfall
modeling on a solid physical foundation and allow the widespread application of trajectory
models for risk assessment and the design of mitigation measures.

The rock shape is in this paper considered to be a convex polyhedral, being a good ap-
proximation of the angular rocks relevant for rockfall. The rocks are released by fracturing
from the bedrock and are therefore edged by nature as opposed to rounded glacial boulders.
Moreover, the polyhedral shape of rocks can originate from the rock morphology. For in-
stance, columnar basalt rocks are prismatic with a predominantly hexagonal cross-section,
and are therefore tall polyhedrons. The typically polyhedral shape of the rocks has a large
influence on their dynamics.

The aim of the present paper is to develop rockfall simulation techniques, which take the
rock shape into account using the state-of-the-art methods of multibody dynamics and non-
smooth contact dynamics. The influence of rock geometry on rockfall dynamics is studied
in this paper through two well-chosen numerical simulations.
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We begin with a short overview in Sect. 2 of how rock shape is treated in existing rockfall
trajectory modeling approaches, thereby placing our work in the context of current rockfall
modeling practice. Subsequently, we start with the introduction of a fully three-dimensional
rigid-body rockfall trajectory model. In Sect. 3, the geometric and mechanical aspects of the
model of the rock, the terrain and their interaction are discussed. Section 4 is concerned with
the numerical time-integration of the equations of motion. Two simulations are documented
in Sect. 5 and the paper closes with conclusions in Sect. 6.

2 Overview of existing rockfall modeling approaches

Following the review article of Volkwein et al. [42], we distinguish between four different
types of rockfall simulation codes: what one may call a “horizontal” 2D approach, a “verti-
cal” 2D approach, the so-called 2.5D approach (being a concatenation of the latter two) and
3D simulation approaches. The goal of all these approaches is to compute the space curve
(x(t), y(t), z(t)) of the center of mass, i.e., the trajectory of the rock. The most simple “hor-
izontal” 2D approach computes the (x(t), y(t)) motion assuming that the rock is a “sliding
block” on the terrain, whereas the z coordinate is defined by the height of the terrain. A “ver-
tical” 2D approach simulates the trajectory (s(t), z(t)) with bounces and flight phases on a
slope profile along a predefined path (x(s), y(s)) on the map with path parameter s, e.g.,
along the line of steepest descent. A concatenation of these two 2D approaches leads to
the 2.5D approach, which first computes the (x, y) motion using a horizontal 2D approach,
thereby defining the path of a slope profile, and subsequently performs a vertical 2D sim-
ulation on the previously computed slope profile. Finally, 3D approaches directly simulate
the spatial translational motion (x(t), y(t), z(t)) but not necessarily the rotational motion
of the rock. Although 2D and 2.5D rockfall simulation techniques have predominantly been
used in the past, a gradual shift can be observed toward 3D rockfall simulation. An extensive
overview of rockfall simulation codes is given in [42]. Here, we will only briefly discuss the
most modern 3D rockfall simulation codes and their properties. Three-dimensional rockfall
simulation codes may be classified according to the geometric modeling of the boulder:

1. Point-mass models: A boulder is considered to be a point-mass, i.e., a point like parti-
cle. The only kinetic property of the boulder is its mass. The kinematics of the boulder
is described by a three-dimensional position vector and a translational velocity vector.
Sometimes the point-mass is equipped with a geometry, which is only used to calculate
the contact with the ground or obstacles (typically trees).

2. Sphere models: A boulder is considered to be a rigid homogeneous sphere with a certain
radius. The kinetic properties of the boulder are its mass and a moment of inertia, which
does not depend on the axis of rotation. The kinematics of the boulder is described by
a position vector, whereas the orientation of the boulder is irrelevant. The generalized
velocity is described by a translational velocity vector and an angular velocity vector.

3. Rigid complex shape models: A boulder is endowed with a geometry, which is parameter-
ized by a number of geometric parameters. For example, a boulder may be a rectangular
block with three parameters (height, width, depth) or be an arbitrary polyhedron. The
properties of the boulder are its mass, the location of the center of mass within the body
and the inertia tensor. The kinematics of the boulder is described by a position vector and
a singularity-free description of the orientation (e.g., by using a quaternion). The gen-
eralized velocity is described by a translational velocity vector and an angular velocity
vector.
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4. Discrete element complex shape models: A boulder is considered to be a collection of
spheres or point-mass particles together with elastic interconnecting elements. Hence,
also the deformation of the boulder is to some extent taken into account.

Point-mass models neither take into account the geometry of the rock nor the energy dis-
tribution between angular and translational degrees of freedom. The modeling of boulders
with spheres leads to excessive run-out lengths because a sphere will keep on rolling on an
inclined slope and may only stop moving at a local minimum in the landscape. Moreover,
gyroscopic forces are absent in a sphere model. Complex shape models do not have these
discrepancies, but ask for much more computational effort and user specification of rock
shape. The full three-dimensional simulation of rockfall with complex shape models allows
to study the influence of rock geometry on the run-out lengths and the scattering of the tra-
jectories. Rockfall research has been dominated in the past by simpler point mass and 2D
models because of their computational efficiency, which is needed in Monte Carlo simula-
tions. Although more computational demanding, 3D rockfall simulation with complex shape
models is now becoming competitive due to fast and cheap personal computers (less than
one second computation time per simulated trajectory on an ordinary PC is typical).

Various modeling approaches exist for the simulation of mechanical bodies, of which
the finite element method, the distinct element method and the rigid-body approach are the
most important ones. A FEM approach allows predicting stresses and deformations. The
distinct element method considers a body to be a collection of (spherical) particles with
(visco-)elastic connecting elements. The rigid-body approach neglects deformations of the
bodies and assumes that the deformations, which are due to applied and contact forces, are
much smaller than the macroscopic motion of the bodies. Hence, if only the macroscopic
motion of the contacting objects is of interest, as is the case in rockfall simulation, then the
rigid-body approach is numerically more efficient and most natural. Most rockfall simulation
packages therefore use the rigid-body approach.

Finally, simulation codes for rigid/elastic bodies with contact (to which rockfall simu-
lation codes belong) can be classified according to the modeling of the contact interaction
(rock–terrain interaction):

1. Rebound impact models: Point-mass models are always combined with an empirical re-
bound model with normal and tangential rebound factors. Stochastic approaches have
been proposed to account for the variability of the rebound.

2. Penalty approach and regularization techniques: The rationale behind these techniques is
that all forces are described by single-valued force laws, which are a function of the gen-
eralized positions and velocities. The penalty approach models the interaction in normal
direction with a one-sided spring or spring–dashpot (Kelvin–Voigt) element. It there-
fore allows for a (small) interpenetration of the contacting bodies and the normal contact
force is proportional to this interpenetration. The tangential contact force, which is due
to dry friction, is usually assumed to obey Coulomb’s friction law. The friction charac-
teristic is regularized (e.g., with an arctangent function) such that the friction force is a
single-valued function of the relative velocity.

3. Hard contact laws/Nonsmooth contact dynamics method: Hard contact laws use set-
valued force laws to describe the interaction between contacting bodies. The impene-
trability of contacting bodies (rock and terrain) is therefore described exactly by using an
inequality complementarity (Signorini’s law). Furthermore, Coulomb’s law of dry fric-
tion is employed in its unregularized form. Stiction of the rock on the terrain can therefore
be described. Apart from force laws for the contact force, also impact laws need to be
specified.
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The penalty method is widely used in the contact dynamics community due to its sim-
plicity, e.g., [17, 23, 25, 29]. All forces are described by single-valued force laws and the
penalty/regularization approach therefore leads to an equation of motion in the form of an
ordinary (but stiff) differential equation for which standard solvers are available. It is some-
times argued that the penalty approach is more realistic than a hard contact law because it can
(in a crude sense) describe the elasticity of the contacting partners in the same way as Hertz
contact law does [29]. The stiffness parameter used in the penalty approach is, however,
almost always chosen much smaller than the Hertzian contact stiffness in order to avoid nu-
merical integration problems, which result from the stiff differential equation. The stiffness
parameter of the penalty approach can therefore not be regarded as a physical (or modeling)
parameter but has to be regarded as a numerical parameter. Usually, a one-sided spring–
dashpot element is used to model the restitution behavior. The amount of restitution can
be steered with the damping coefficient of the spring–dashpot element. Unfortunately, the
penalty stiffness also influences the impact process and restitution (see [6], Sect. 2.1.3). Nu-
merical parameters are therefore mixed with modeling parameters in the penalty approach
which is a significant drawback. Moreover, a straightforward regularization of Coulomb’s
friction law leads to another cumbersome effect: The friction force vanishes for zero relative
velocity and stiction is no longer possible. This means that an object can never stand still on
an inclined slope, because the friction force is not able to make equilibrium with the gravi-
tational force. Hence, a rock with a regularized friction law will always (slowly) slide down
the terrain, contrary to what is observed in reality. More elaborate regularized friction mod-
els have been developed which can describe stiction (LuGre model [7], Karnopp model [26],
switch model [34]), using internal states or switching techniques, but these methods are not
suitable for the simulation of multibody systems with many frictional unilateral constraints.

The nonsmooth contact dynamics method [1, 6, 14, 18, 24, 33, 35, 37] uses hard con-
tact laws. The impenetrability of the contacts in the “hard” modeling approach asks for
set-valued force laws (Signorini’s law, Coulomb’s friction law) and instantaneous impacts
laws (of Newton or Poisson-type), which give at collision times an instantaneous change in
the velocities of all contacting bodies. The formulation of unilateral and frictional contact
behavior therefore requires constitutive contact laws, which are set-valued. The equations of
motion are therefore no longer described by ordinary differential equations but by measure
differential inclusions. Numerical time-integration methods measure differential inclusions
are continually being developed and improved [1, 41].

With the above classifications in mind, we will give a brief overview of the existing 3D
rockfall simulation codes. The majority of the existing 3D rockfall simulation packages use
point-mass models. Examples are STONE [22] and its successor HY-STONE [10] as well as
RockFall Analyst [28] and PICUS-ROCKnROLL [43]. These point-mass models are always
combined with an empirical rebound model with normal and tangential rebound factors.

RockyFor3D [5], which has been developed since 1998 [12], uses essentially a sphere
model in combination with a stochastic impact model which leads to a lateral dispersion of
the trajectories. RockyFor3D has the possibility to use rectangular, ellipsoidal and spherical
boulder forms as input for the simulations, but this shape information is only used to calcu-
late the moments of inertia and only a spherical shape is used to calculate the contact with
the terrain or trees.

CRSP-3D (Colorado Rockfall Simulation Program) [3] employs the distinct element
method together with a penalty approach. Nonspherical boulder forms such as a rectangular
cuboid or a cylinder are approximated by a collection of rigid spheres with interconnecting
elastic elements.
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The rockfall simulation code STAR3-D [11, 30, 31], which is being developed at
LCPC (Paris) and IRSTEA (formerly known as CEMAGREF, Grenoble), is a fully three-
dimensional rockfall simulation code with a rigid complex shape model. However, STAR3-
D is limited to parallelepiped rock shapes. The nonsmooth contact dynamics method in com-
bination with the percussion law of Frémond [14] is used in STAR3-D to model the rock–
terrain interaction and the rock–tree interaction. As the numerical integration method has
not been documented, one may assume that the standard Moreau time-stepping method [37]
has been employed.

The code LMGC90 [13, 24, 37] is a general purpose open-source software developed at
the LMGC laboratory (Montpellier), capable of modeling a large collection of deformable or
undeformable particles of various shapes, with various interaction laws (e.g., hard contacts).
LMGC90 is used in [39] to simulate rockfall in quarries and galleries. However, LMGC90
does not have a specialized user-interface for rockfall simulation in mountainous areas (i.e.,
GIS-based elevation model for the terrain, forest interaction, etc.).

Having discussed the various ways to classify rockfall simulation approaches and exist-
ing simulation software packages, we start presenting the simulation techniques used and
developed in this paper.

3 The simulation model

The simulation method proposed in this paper has the following characteristics:

1. a full 3D simulation model for rockfall based on the nonsmooth contact dynamics method
with hard contact laws,

2. a complex shape model which consists of an arbitrary convex polyhedron and is therefore
not restricted to blocks (or parallelepiped shapes),

3. a terrain model which is based on a high resolution digital elevation model,
4. a specialized friction law for rockfall is proposed in this paper which allows for the

description of scarring behavior (i.e., rocks tend to slide over the terrain before lift-off),
5. a drag force model for forest interaction,
6. an energetically consistent numerical time-integration technique, which guarantees that

there is no energy increase during flight phases.

The proposed simulation method is implemented in the software package RAMMS (Rapid
Mass MovementS), being a simulation tool for the prediction of natural hazards such as
avalanches and debris flow developed at the WSL Institute for Snow and Avalanche Re-
search SLF [8, 9]. The software RAMMS has an extensive graphical user-interface and a
high resolution digital elevation model (topographical satellite data or airborne LIDAR) is
used as input data. The integration of the simulation code in an existing software package for
natural hazards is a prerequisite for the use of the tool by a larger community (geophysicists,
geologists, engineers).

The rockfall simulation model presented here considers the rock to be a perfectly rigid
and unbreakable three-dimensional body in the form of a convex polyhedron. It may come
into contact with the impenetrable surface of the terrain. First, we will introduce various co-
ordinate frames in Sect. 3.1 and define the terrain geometry in Sect. 3.2. Subsequently, the
rock geometry, kinematics, and dynamics are extensively described in the remaining part of
this section. The formulation of standard contact and impact laws from nonsmooth dynam-
ics will briefly be described in Sect. 3.6. However, some phenomena of rockfall dynamics
cannot be described by standard contact laws. Therefore, a slippage dependent friction co-
efficient model is introduced in Sect. 3.7.
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Fig. 2 The terrain model resides
in the inertial frame I with origin
O . The geometry of the rock is
specified in the body-fixed frame
B with origin C. The eigenframe
K with the center of mass S as its
origin is used in the simulation

3.1 Coordinate systems

In the following, the three orthonormal coordinate frames I , K , and B are used, as shown
in Fig. 2. The frame I with origin O is the inertial frame in which the terrain geometry
is specified. The rock resides in a body-fixed coordinate frame K , which is translated and
rotated with respect to I by a time-dependent transformation. The frame K is defined as the
eigenframe of the rock’s inertia tensor and is attached at the center of mass S of the rock.
Initially, the geometry of the rock may be specified in a body fixed coordinate frame B with
origin C, which does not agree with frame K , but is translated and rotated with respect to
K by a constant transformation.

The rotation of frame K with respect to frame I is represented by a unit quaternion
pIK = (e0 e)T. The quaternion coordinate e0 stands for the “real part” of the quaternion pIK

and the three-dimensional vector e = (e1, e2, e3) for the “imaginary part.” The coordinate
transformation Kr �→ I r of the coordinates of r in the K frame to the I frame is given by
the coordinate transformation matrix

AIK =
⎛
⎝

(e2
0 + e2

1 − e2
2 − e2

3) 2(e1e2 − e0e3) 2(e0e2 + e1e3)

2(e0e3 + e1e2) (e2
0 − e2

1 + e2
2 − e2

3) 2(e2e3 − e0e1)

2(e1e3 − e0e2) 2(e0e1 + e2e3) (e2
0 − e2

1 − e2
2 + e2

3)

⎞
⎠ (1)

such that I r = AIKKr .

3.2 Terrain geometry

A high resolution digital elevation model, giving the height of the terrain on a fixed grid, is
used to define the terrain geometry. The height values hk,l of the digital elevation model at
the vertices indexed by k ∈ {0,1, . . . , nx} and l ∈ {0, , . . . , ny} are specified on a rectangular
uniform grid with cell-sizes lx , ly , and nx , ny cells in x- resp. y-direction. The height values
hk,l are bilinearly interpolated providing a height map z : (x, y) �→ z(x, y).

A specific location (x, y) is located in the grid-cell (k, l) = (�x/lx�, �y/ly�), where �·�
denotes the floor function, and has the interpolation parameters (η, ξ) ∈ [0,1]2, where

η = x/lx − k, ξ = y/ly − l. (2)
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Fig. 3 The contact frame at a
point Q on the terrain is spanned
by the normal vector n and the
two tangential vectors t1, t2

The interpolation parameters (η, ξ) are fed into four weight functions wi,j : [0,1]2 → [0,1]

w0,0(η, ξ) = (1 − η)(1 − ξ), w1,1(η, ξ) = ηξ,

w0,1(η, ξ) = (1 − η)ξ, w1,0(η, ξ) = η(1 − ξ),
(3)

which weigh the height values of the four corners of the corresponding grid cell. The inter-
polated height z(x, y) is given by the weighted sum

z(x, y) = zkl(η, ξ) =
1,1∑

i,j=0

hk+i,l+j wi,j (η, ξ), (4)

where (k, l) and (η, ξ) are functions of (x, y). The corresponding point Q on the terrain is
represented as a vector with respect to the inertial frame I with origin O

I rOQ,kl(η, ξ) =
⎛
⎝

(η + k) lx
(ξ + l) ly
zkl(η, ξ)

⎞
⎠ . (5)

Modeling parameters which are considered to be position dependent, such as the friction
and restitution coefficients, are interpolated in the same manner on the same grid.

Each point (x, y, z) on the terrain is endowed with a local contact frame (n, t1, t2); see
Fig. 3. The contact frame defines the contact plane and its normal. It therefore describes
the directions of the normal and tangential components of the contact force as well as the
kinematic contact quantities (relative velocities in normal and tangential directions). Force
laws for each of the components of the contact force are given in Sect. 3.6. The normal
direction n of the contact frame determines the direction of the normal force, which prevents
the rock from falling through the terrain. The two tangential directions, t1 and t2, span the
contact plane in which the friction force lives. The normal can be obtained by building the
cross product

nkl(η, ξ) = ∂ηI rOQ,kl(η, ξ) × ∂ξ I rOQ,kl(η, ξ) =
⎛
⎝

−∂ηzkl(η, ξ) ly
−∂ξ zkl(η, ξ) lx

lx ly

⎞
⎠ . (6)

After evaluating the directional derivatives of zkl and simplifying the resulting expressions
the normal becomes

nkl(η, ξ) =
⎛
⎝

−((hk+1,l − hk,l)(1 − ξ) + (hk+1,l+1 − hk,l+1)ξ)ly
−((hk,l+1 − hk,l)(1 − η) + (hk+1,l+1 − hk+1,l )η)lx

lx ly

⎞
⎠ . (7)
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Fig. 4 Generation of the rock geometry and inertia properties

Two additional vectors t1, t2 are needed to span the plane orthogonal to n. The rotation of
t1 and t2 around the normal is arbitrary and a suitable choice has to be made, e.g.,

e = argmin
v∈{eI

x ,eI
y ,eI

z }
|v · n|, t1 = e × n, t2 = n × t1. (8)

3.3 The rock model

The rock geometry is considered to be a three-dimensional convex polyhedron and can there-
fore be defined as the convex hull of a finite point set in the three-dimensional space. Real
rocks, which are found in the field, are being digitized by the WSL Institute for Snow and
Avalanche Research SLF using laser scanning techniques. In this way, a cloud of points is
generated (typically consisting of a few hundred points), which is subsequently converted to
a convex polyhedron, and used in the simulation model. The generation of the rock geome-
try is illustrated in Fig. 4. The rock geometry is specified by a point cloud in the body-fixed
coordinate frame B with the origin C (Fig. 4(a)). The convex hull of the point cloud is con-
structed after which the center of mass S and the inertia tensor of the rock are determined
under the assumption of a homogeneous mass distribution (Fig. 4(b) and 4(c)). Lastly, the
eigenframe K of the inertia tensor is calculated and chosen as the new body-fixed frame
with origin S (Fig. 4(d)).

Several forces act on the rock and determine its trajectory as shown in Fig. 5. The force

IF g = −mgIe
I
z (9)

models the gravitational force, where m is the mass of the rock and g is the gravitational
acceleration, which acts in the negative z direction of the inertial frame I . The presence
of forest and bush can have a significant influence on the rock trajectory. In the absence
of sophisticated models for vegetation interaction, we propose a drag force IF d as being a
very crude approximation for the influence of forest and bush on the rock trajectory. This
drag force is assumed to be linear in the velocity IvS of the center of mass S and acts in the
opposite direction of the velocity

IF d = −cd(I rOS) IvS, (10)

where the drag coefficient

cd(I rOS) =
{

ĉd (x, y) if z < zheight

0 otherwise
(11)
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Fig. 5 External forces acting on
the rock are the gravitational
force I Fg and frictional contact
forces I Fc . For a rock with its
center of mass lying inside the
drag force layer with height
zheight, the drag force I Fd is
enabled and acts in the opposite
direction of the center of mass
velocity I vS of the rock

varies depending on the current location I rOS = (x, y, z) of the center of mass of the rock
and is only enabled below a certain height zheight above the terrain as shown in Fig. 5. In this
way, the effect of tree height is taken into account.

Additionally, frictional contact forces IF c model the interaction of the rock with the
terrain. In Fig. 5, the corresponding arrow is not attached at the center of mass to suggest
that these forces act at arbitrary material points. Depending on the current configuration of
the rock, the number of active contact forces varies. Each contact force acts at a different
material point on the surface of the rock and their introduction into the equations of motion
is therefore more involved (see Sect. 3.4).

3.4 Equations of motion and impact equation

In this section, the equations of motion and the impact equations of the rock are discussed.
The rock is assumed to be a three-dimensional rigid body, with three translational and three
rotational degrees of freedom. Its configuration at time t is represented by the tuple of gen-
eralized coordinates

q :=
(

I rOS

pIK

)
∈ R

7, ‖pIK‖ = 1, (12)

where I rOS represents the coordinates of the position of the body’s center of mass S rela-
tive to the origin O of the inertial frame and pIK = (e0 e)T are the coordinates of the unit
quaternion (hence the normalization condition) representing the orientation of the body-
fixed coordinate frame K with respect to the inertial frame I .

The time-derivative q̇ of the generalized coordinates (12) is represented by a reduced
vector of generalized velocities

u :=
(

IvS

KΩ

)
∈ R

6, (13)

where IvS is the translational velocity of the center of mass represented in the inertial frame
I and KΩ is the angular velocity represented in the body-fixed frame K . The time derivative
of the generalized coordinates is related to the generalized velocities (13) through the linear
map (see [38])

q̇ = F (pIK)u a.e., F (pIK) =
⎛
⎝

I 3×3 0
0 − 1

2eT

0 1
2 e0I + 1

2 ẽ

⎞
⎠ , (14)
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where I 3×3 is a 3 × 3 unit matrix and˜ denotes the linear operator which turns a three-
dimensional vector into a 3 × 3 skew-symmetric matrix such that ãb = a × b.

We first consider the rock in free flight (and deal with the contact forces later). The time
evolution of the translational velocity IvS is described by the linear momentum equation

mI v̇S = IF d + IF g, (15)

where the right-hand side is composed of the drag force IF d ; see (10), and the gravitational
force IF g , see (9). The time evolution of the angular velocity KΩ is given by the spin
equation

KΘSKΩ̇ + KΩ × KΘSKΩ = KMa, (16)

where KΘS is the inertia tensor represented in the body-fixed K frame and KMa contains
external free torques. However, KMa = 0 as the only external moments result from contact
forces. The benefit of choosing a representation of the spin equation in the body-fixed frame
K is that the inertia tensor ΘS is constant and diagonal in frame K and can be expressed as

KΘS = diag(Θ1,Θ2,Θ3), (17)

where Θ1,Θ2,Θ3 ∈R are the principal moments of inertia.
The linear momentum equation (15) and the spin equation (16) are combined into the

equations of motion

Mu̇ − h(q,u) = 0 (18)

with the constant and diagonal mass matrix M and the force term h(q,u), which contains
the gyroscopic terms and external finite forces, given by

M =
(

mI 3×3 03×3

03×3 KΘS

)
, h(q,u) =

(
IF d + IF g

−KΩ × KΘSKΩ

)
. (19)

Subsequently, we account for the contributions of unilateral constraint forces and friction
forces and augment the equations of motion (18) with Lagrangian multipliers

Mu̇ − h(q,u) = W (q)λ a.e., (20)

where W is the matrix of generalized force directions and λ is a vector containing all the
contact forces. The contact forces IF c ∈ R

3, which have been introduced Sect. 3.3, appear
in the equations of motion (18) through the generalized forces W (q)λ. The equations of
motion (20) are fulfilled almost everywhere except at impact time instants ti for which ve-
locity jumps occur due to impulsive contact forces. At these time instants, the velocities
u(t) and accelerations u̇(t) are undefined and the differential equations have therefore to be
complemented by the impact equations

M
(
u+(ti) − u−(ti)

) = W
(
q(ti)

)
Λ(ti), (21)

which relate the left- and right-limits of the velocities u− resp. u+ to the impulsive contact
forces Λ. The gyroscopic terms and the finite external force terms are nonimpulsive and do
not have a contribution in the impact equation.
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Fig. 6 Collision detection for
three different rock geometry
points P1,P2,P3. For the points
P1,P2, the gap function has a
negative sign because they lie
below the terrain surface S

By introducing the differential measures du = u̇dt +(u+−u−)dη and dP = λdt +Λdη,
where dt is the Lebesgue measure and dη is the Dirac measure the differential equations of
motion and the impact equations are combined into the measure differential equation

M du − h(q,u, t)dt − W (q)dP = 0, (22)

also called equality of measures [35]. The differential measure of percussions dP accounts
for contributions of frictional contact forces and frictional impulsive contact forces. The
differential measure formulation (22) can be directly discretized, which leads to a dedicated
time-integration scheme for multibody systems with impulsive motion (see Sect. 4).

3.5 Contact detection and contact forces

Whenever the rock touches the terrain, the manifold of contact is represented as a discrete
collection of contact points. Each contact point introduces normal and tangential contact
forces into the equations of motion. Assuming that the resolution of the terrain is coarser
than that of the rock geometry, only the points of the rock geometry are tested against pene-
tration with the terrain to determine whether a contact is potentially active (on displacement
level) or not. This information is obtained by looking at the sign of the gap function

gN(xP , yP , zP ) = zP − z(xP , yP ) (23)

of each of the geometry points P , where xP , yP , zP represent the inertial coordinates of P

and z(xP , yP ) is the height of the terrain below P . This operation corresponds to projecting
the point P vertically onto the terrain and comparing the height of the projected point Q

with the height of the original point P ; see Fig. 6. If gN > 0, then the point P is above the
terrain and, therefore, higher than its vertical projection point Q. If gN = 0, then the point
P is on the terrain and agrees with its projection Q. If gN < 0, then the point P is below the
terrain and there is a certain amount of penetration between the rock and the terrain.

For numerical reasons, we have to allow for a very small amount of penetration, which
is only needed in a Boolean sense: When gN ≤ 0, there is contact; when gN > 0 there
is no contact. Whenever gN ≤ 0 holds, contact forces, acting on the point P of the rock,
are computed which obey a contact law. Loosely speaking, the contact law ensures that no
further penetration occurs, or that the contact is lost (gN > 0).

Consider a contact pair (P,Q) and the contact frame C = (In, I t1, I t2) attached to
Q. Contact between the rock and the terrain (gN ≤ 0) invokes a contact force λ =
(λN,λT 1, λT 2)

T in the three basis directions of the contact frame C. The normal contact
force λN guarantees the unilaterality of the contact, whereas λT 1 and λT 2 are the tangential
components of the contact force due to Coulomb friction. The contact force λ has a general-
ized force f C = Wλ in the equation of motion, where W is the matrix of generalized force
directions.
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The generalized force directions W of a force-element can be obtained from its kinematic
relations as a consequence of the principle of virtual work, or, equivalently, the principle of
virtual power, e.g. see [18]. Hereto, let γ C = (γN , γT 1, γT 2)

T denote the contact velocity,
being the relative velocity of point P with respect to point Q in the three basis directions of
the contact frame C:

γ C = CvP − CvQ. (24)

Using vQ = 0, as the terrain does not move, together with the coordinate transformation
matrix AIC = AT

CI = (In I t1 I t2) we obtain the contact velocity γ C = ACI IvP = AT
ICIvP ,

which can be expanded using the rigid body formula vP = vS + Ω × rSP giving

γ C = AT
IC(IvS + IΩ × I rSP )

= AT
IC(IvS + AIK KΩ × KrSP ),

(25)

where IvS is the translational velocity of the center of mass represented in the inertial frame
I and KΩ the angular velocity represented in the body-fixed frame K . The position vector
from the center of mass S to point P is given by KrSP , represented in the K frame. Using
the antisymmetry of the cross-product, i.e., a × b = −b × a = −b̃ a where b̃ is a skew-
symmetric matrix, one obtains

γ C = AT
IC(IvS − AIK K r̃SP KΩ)

= AT
IC

[
I 3×3 −AIK K r̃SP

](
IvS

KΩ

)

︸ ︷︷ ︸
u

(26)

in which the generalized velocities u have been separated. Finally, we introduce the gener-
alized force directions as

W (q) = [
I 3×3 −AIK K r̃SP

]T
AIC, (27)

being dependent on the generalized position q , and write the contact velocity as

γ C = W Tu, (28)

which is a linear form in the generalized velocity u. Using the principle of virtual power, for
which the velocities are varied and the positions are kept fixed during the variation process,
we equate the virtual power of the contact force λ to the virtual power of the generalized
contact force f C , such that

δγ T
Cλ = δuTf C, (29)

where δu and δγ C are the virtual generalized and contact velocity, respectively. Substitution
of the kinematic relationship δγ C = WTδu (28) in the virtual power equality (29) yields

δuTWλ = δuTf C. (30)

The latter has to hold for all virtual velocities δu whereupon we infer that the generalized
contact force is given by f C = Wλ.
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Fig. 7 Normal contact law (a) and Coulomb friction law (b)

For every potentially active contact i, an additional Lagrange multiplier term W iλi is
introduced into the equations of motion. The three-dimensional contact force vector

λi =
(

λNi

λTi

)
∈ R

3 (31)

contains the normal force λNi ∈R and the friction force λT i = (λT 1i λT 2i ) ∈R
2.

3.6 Contact laws

The constitutive behavior of the contact is described by various contact laws for the contact
forces as well as impact laws for impulsive contact forces.

3.6.1 Normal contact force law

The contact law in normal direction is given by the inequality complementarity

λN ≥ 0 ∧ gN ≥ 0 ∧ λN gN = 0, (32)

being a set-valued relationship between the gap function gN and the normal contact force λN

(Fig. 7(a)). Physically, the inequality complementarity conditions (32), often referred to as
the Signorini conditions, express that either the normal force is nonnegative λN ≥ 0 and the
contact is closed gN = 0, or the contact is open gN > 0 and the force has to vanish λN = 0.
The relations (32) are often written in the more compact and elegant form

0 ≤ λN ⊥ gN ≥ 0, (33)

which is equivalent to (32). Nonsmooth dynamics uses the concept of normal cone
inclusions to formulate inequality complementarities or more general set-valued force
laws [18, 35]. In particular, the inequality complementarity (32) is expressed by

−gN ∈ N
R

+
0
(λN), (34)

where N
R

+
0
(λN) denotes the normal cone on the set R+

0 of all nonnegative real numbers, i.e.,

N
R

+
0
(λN) =

{
{0} for λN > 0

(−∞,0] λN = 0
. (35)
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For the numerical implementation, it is necessary to formulate the normal contact law, which
is originally stated on position level, by a set-valued force law on velocity level [18]

gN > 0 : λN = 0,

gN = 0 : − γN ∈ N
R

+
0
(λN).

(36)

3.6.2 Coulomb friction law

The tangential contact force λT is assumed to obey spatial Coulomb’s friction law. For the
isotropic Coulomb’s friction law, stiction γ T = 0 occurs as long as the magnitude of the
tangential force ‖λT ‖ is less than μλN , where μ is the friction coefficient. Furthermore,
sliding γ T = 0 is possible if the magnitude is exactly μλN and the tangential force acts in the
opposite sliding direction. The mathematical formulation of the isotropic spatial Coulomb
friction can be stated in the form of a normal cone inclusion

−γ T ∈ NμλND(λT ) =
{

{0} if ‖λT ‖ < μλN

R
+
0 λT if ‖λT ‖ = μλN

, (37)

where the convex set μλND is the scaled two dimensional friction disc D = {x ∈ R
2 | ‖x‖ ≤

1} with radius μλN as shown in Fig. 7(b). This formulation covers both the sticking and
the slipping case. The sticking case corresponds to the situation where the tangential force
λT lies inside the scaled friction disc. In that case, the normal cone contains just the zero
element. If, on the other hand, the force lies on the boundary of the disc, the normal cone
becomes the outward normal ray of the disc. The fact that the friction force has to act in
the opposite direction of the sliding velocity is reflected in the negative sign in front of the
sliding velocity in the inclusion formulation (37).

3.6.3 Impact laws

Signorini’s law (34) and Coulomb’s friction law (37) are set-valued force laws for the non-
impulsive contact forces. In addition, as we consider hard unilateral constraints, impulsive
contact forces arise whenever a contact closes with a negative relative velocity γ −

N < 0. Such
a finite speed-of-approach requires a jump in the generalized velocities u, which has to be
induced by the impulsive contact forces Λ through the impact equation (21). The jump in
generalized velocities has to be such that each post-impact velocity in normal direction is
nonnegative, i.e., γ +

N ≥ 0 and, therefore, kinematically admissible.
The constitutive relation between the impulsive contact force and the kinematic quanti-

ties, which characterize the velocity jump is called an impact law. Various types of impact
laws exist and the one adopted in this work is based on the classical Newtonian impact
law [19, 35, 37]. In its extended form, it is also stated as a normal cone inclusion which for
the normal direction has the form

−(
γ +

N + εNγ −
N

) ∈ N
R

+
0
(ΛN). (38)

Here, γ −
N , γ +

N are the relative velocities in normal direction before and after the impact and
εN ∈ [0,1] is the coefficient of restitution for the normal direction. The case with εN = 1 cor-
responds to a reflection of the normal velocity whereas a smaller εN additionally dissipates
energy.
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The inclusion (38) contains the two cases

case 1: γ +
N + εNγ −

N = 0 ∧ ΛN > 0,

case 2: γ +
N + εNγ −

N ≥ 0 ∧ ΛN = 0.
(39)

In the first case, there is an impact with impulsive contact force ΛN > 0 and the New-
ton impact law is fulfilled because γ +

N + εNγ −
N = 0. For a kinematically incompatible

preimpact velocity γ −
N < 0 the impact equation delivers a compatible post-impact veloc-

ity γ +
N = −εNγ −

N > 0. In the second case, no impulsive contact force is exerted and the
Newton impact law is only fulfilled as an inequality. This case accounts for the impact free
separation of a contact, which may be induced by impacts at other contacts.

Normal contact forces induce tangential friction forces through Coulomb friction. Simi-
larly, normal impulsive contact forces induce tangential impulsive friction forces. The tan-
gential impact law has the form

−(
γ +

T + εT γ −
T

) ∈ NμΛND(ΛT ). (40)

The tangential parameter of restitution εT can be used to model the dynamic effects of rubber
superballs, which may store elastic energy in shear direction; see [19]. In the present work,
we choose εT = 0 for the rock terrain interaction as such elastic effects are clearly absent.

It is known that Newtonian impacts may lead to an increase in kinetic energy when
combined with friction [19, 35]. Such an energetic inconsistency may happen when the
coefficients of restitution εN and εT of participating contacts are very different in value.
This discrepancy of the Newtonian impact law is not really a burden for rockfall simulation
as the normal restitution coefficient is typically very small and, therefore, close to εT = 0.
Furthermore, there exist pathological cases where a preimpact velocity γ −

N > 0 is mapped
by the Newtonian impact law (38) onto a post-impact velocity γ +

N < 0 that lies no longer
in the kinematically admissible set. Theoretically, such a preimpact state cannot be reached,
however, it can occur in the numerics. Poisson’s impact law, which is more elaborate as it
uses two inequality complementarities, does not suffer from kinematic inconsistency [20].

3.6.4 Combined contact model

For a more compact notation, the inclusion formulations of the unilateral force law on ve-
locity level (36) and the Coulomb friction law (37) are combined in a relation between the
contact force λC (31) and the relative contact velocity γ C (24). The resulting combined force
law can again be stated in the form of a (pseudo) normal cone inclusion

−γ C ∈ NS(λC), (41)

where the convex set S = R
+
0 × μλND as a Cartesian product of the normal and tangential

force reservoirs is introduced. Note that the set S is dependent on λN and, therefore, on λC ,
which makes (41) a pseudo normal cone inclusion, being related to a pseudo-minimization
problem [33]. Analogously, the impact laws are stated as

−(
γ +

C + εγ −
C

) ∈ NT (ΛC), (42)

where T =R
+
0 × μΛND and ε = diag(εN , εT , εT ).
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Fig. 8 The scarring phenomenon

For multiple contacts Ci , the inclusion problem of normal cone type can also be specified
in a global form. Let nc be the number of active contacts on position level. The (pseudo)
normal cone inclusion can be written as

−γ ∈ NC(λ), (43)

where

γ = (γ C1
,γ C2

, . . . ,γ Cnc
)T ∈R

3nc , λ = (λC1 ,λC2 , . . . ,λCnc
)T ∈ R

3nc (44)

C = S1 × S2 × · · · × Snc . (45)

A simplified global form can analogously be written for the impact laws.

3.7 Slippage dependent friction model

Field observations of rockfall events reveal the so-called “scarring” phenomenon. Upon im-
pact with the terrain, the rock penetrates the terrain cover and ploughs a scar through the
top-soil while sliding and the rock subsequently detaches from the terrain. A trace on the
terrain with a finite scar length can then be observed. Figure 8(a) shows such a scar, where
the scar starts at the tip of the triangular indentation (i.e., the bottom of the figure). While
sliding, the rock continuously accumulates ground material in front of it (see Fig. 8(b)),
which leads to an increase in sliding resistance. Such an increase in friction at the contact
between rock and terrain causes the rock to topple and detach from the terrain. This phe-
nomenon has a resemblance with an ice skater, which approaches a part of the ice surface
covered with sand. The skate will suddenly experience much friction (possibly getting stuck)
and the ice skater will be launched thereby losing contact with the ice. The modeling of the
scarring behavior is therefore important for rockfall dynamics as it has influence on jump
heights and distances. In order to describe the scarring phenomenon, the standard contact
laws of Sect. 3.6 are complemented here with a novel model for the friction coefficient.
A simulation showing the effect of the novel friction model and illustrating the scarring
phenomenon is presented in Sect. 5.1.

The slippage dependent friction model extends the Coulomb friction model with a slip-
page dependent friction coefficient μ(s) where the slippage s is an internal state of the
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Fig. 9 Slippage dependent friction model

friction model. The slippage s is loosely being defined as the distance which the center of
mass has traveled during the contact phase (see Fig. 9(a)). The dependence of the friction
coefficient on the slippage is chosen as

μ(s) = μmin + 2

π
(μmax − μmin) arctan(κs), (46)

where μmin, μmax, and κ are parameters of the friction model. The friction coefficient μ

equals μmin for s = 0 and tends to μmax for very large values of s, see Fig. 9(b). Hence, the
frictional resistance increases with increasing slippage but saturates for very large values of
the slippage.

The slippage distance s, being an additional state variable, has a time-evolution which is
described by the differential equation

ṡ =
{

‖vS‖ if at least one contact with terrain

−βs else
(47)

and the additional initial condition s(0) = s0 ≥ 0. As long as there is at least one active
contact with λN > 0 between terrain and rock, s grows by integrating the norm of the center
of mass velocity vS of the rock. The slippage variable s therefore increases with the slipping
distance of the center of mass. An exponential decay to zero of the slippage s is assumed
when the rock is no longer in contact with the terrain. The speed of the decay is steered by
the friction model parameter β . Note that the slippage s is not simply set to zero upon contact
loss between rock and terrain. The slippage variable s changes continuously in the presented
model, which reflects the physical behavior that the rock gradually has to overcome the heap
of ground material in front of it. Furthermore, the continuous change of s avoids numerical
chattering problems.

4 Numerical time-integration

The main numerical integration techniques for systems with unilateral constraints are the
event-driven integration method and the time-stepping method [1, 37, 41], of which the
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time-stepping method is far more robust than the former method. The event-driven inte-
gration method numerically integrates the equations of motion using a standard ODE or
DAE solver up to a nonsmooth event (a collision or stick-slip transition) at which inte-
gration is halted. The impact equations are then applied to arrive at post-impact velocities
and the new contact configuration (or “hybrid mode”) is determined for which standard
integration can be continued. The event-driven method has the disadvantage that it is not
robust and that it can not overcome accumulations of nonsmooth events, i.e., when infinitely
many events occur in a finite time. The time-stepping method, which has been introduced
by Moreau [37], remedies these problems by choosing a blurred approach in which there is
no real distinction between nonimpulsive and impulsive dynamics. Conventional integration
methods determine accelerations from forces and use the accelerations to calculate veloc-
ity updates and position updates over time-steps. The basic idea behind the time-stepping
method is to only calculate velocity updates and position updates over time-steps, usually
with a fixed step-size. The algorithm calculates for each time-step the percussion, being the
overall integral of contact forces and sums of impulsive contact forces over the time-step.
Multiple events may take place during one time-step but only a single finite percussion is
computed. The instantaneous value of the contact force or a single impulsive contact force
is therefore never determined. Correspondingly, the acceleration is not computed by the al-
gorithm, as it becomes infinite for impulsive forces. The positions and velocities at the end
of the time-step are found by solving an algebraic inclusion, which describes the contact
problem, for instance by formulating it as a linear or nonlinear complementarity problem
or as a set of nonlinear equations by using the proximal point function (the so-called aug-
mented Lagrangian approach) [2, 33]. The time-stepping method is especially useful when
one is interested in the global motion of systems with many contact points, leading to a large
number of events. Each individual event is for those applications not of importance but the
global motion is determined by the sum of all events. The benefit of time-stepping meth-
ods over event-driven integration methods is the fact that no (or less) event-detection and
index sets are needed. This makes the algorithm less complex, more robust, and will give
a reduction in computation time when many contacts are involved. A second advantage of
the time-stepping method is its capability to pass accumulation points of impacts. A notable
disadvantage of the time-stepping method is its low-order accuracy.

The time-stepping scheme adopted in this work is based on the semi-implicit energeti-
cally consistent numerical scheme by Möller [36]. The contact problem in each time-step is
formulated as a set of implicit equations by using the proximal point function and solved by
a Gauss–Seidel iteration method. The discretized equations of motion and the contact inclu-
sion problem are discussed in Sect. 4.1 and reformulated in their explicit form in Sect. 4.2. In
Sect. 4.3, the discrete inclusion problem is formulated as an implicit relation for the contact
percussions and are transformed into nonlinear equations.

4.1 Discretization of the equations of motion

The semi-implicit energetically consistent time-stepping scheme by Möller (Sect. 5.2.5
in [36]) is an adaptation of the classical Moreau time-stepping scheme [37] in which the
gyroscopic terms are discretized in a special way such that the scheme becomes energeti-
cally consistent. Here, a slightly more explicit version of Möller’s scheme is chosen which
carries many of the energetic consistency properties and is more computational efficient.
The merit of an energetically consistent scheme for rockfall dynamics is that the rotational
energy of the rock remains constant during flight phases.

The integration scheme employs a midpoint method (see Fig. 10) with time-step size
�t such that the generalized positions are approximated at the beginpoint tB and endpoint
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Fig. 10 Illustration of the
midpoint scheme

tE = tB + �t of the time-step as well as at a midpoint tM = tB + �t
2 . The time-stepping

scheme calculates for a given (qB,uB) at the beginning of the time-step tB an approximant
for the state (qE,uE) as well as an approximant P ≈ ∫

[tB,tE] dP of the percussion during the
time-step.

Given the state of the system (qB,uB) at the beginning of the time-step tB a half-explicit
Euler step in the generalized coordinates q is performed to arrive at the midpoint tM. The
generalized coordinates qM at the midpoint are used to evaluate the generalized force direc-
tions W (qM). These are necessary to set up the inclusion problem, which is subsequently
solved for the contact percussions P acting during this time-step. Using the contact percus-
sions P , the velocity uE at the end tE of the time-step is determined and a second explicit
Euler step is performed to obtain the end configuration qE. The differential measure equa-
tion (22) and the relations between the generalized velocity and the time differential of the
generalized coordinates (14) are discretized in the following way:

qM = qB + �t

2
F

(
pB

IK

)
uB, (48)

M
(
uE − uB

) + �t

(
cd(I r

B
OS)Iv

B
S + mgIe

I
z

1
2 (KΩ̃

B
KΘS + KΘSKΩ̃

B
)(KΩE + KΩB)

)
− W

(
qM

)
P = 0, (49)

qE = qB + �t F
(
pM

IK

)uE + uB

2
, (50)

where the drag force term in (49) is discretized explicitly and the gyroscopic term semi-
implicitly (see [36]). The rationale behind this is discussed at the end of this section.

The differential equation for the slipping distance (47) is handled separately and also
discretized explicitly as

sE =
{

sB + �t ‖vE
S‖ if contact,

sBe−β�t otherwise.
(51)

The time-stepping equations (49) are solved together with the discretized contact force/
impact laws for the percussions P which can be expressed by the inclusion problem

−(
γ E + εγ B

) ∈ NC(P ), (52)

with the kinematic relations

γ E = W
(
qM

)T
uE, γ B = W

(
qM

)T
uB. (53)
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The energetic consistency properties of the scheme can be checked by pre-multiply-
ing (49) with 1

2 (uE + uB)T, which gives the energy balance

�T + �V − �Egyro − �Edrag − �Econstr = 0, (54)

where �T = 1
2 (uE +uB)TM(uE −uB) = T E −T B is the change in kinetic energy and �V =

− 1
2mg(Iv

E
S + Iv

B
S )T

Ie
I
z�t = −mg(qE − qB)T

Ie
I
z = V E − V B is the change in gravitational

potential energy. Of interest is the energy increment of the gyroscopic forces

�Egyro = −1

4

(
KΩE + KΩB

)T(
KΩ̃

B
KΘS + KΘSKΩ̃

B)(
KΩE + KΩB

)
�t = 0 (55)

which vanishes because of the skew-symmetry of the matrix (KΩ̃
B

KΘS + KΘSKΩ̃
B
). This

favorable property of the scheme is due to the nonstandard discretization of the gyroscopic
term in (49), an idea which has also been used in [36], Sect. 5.2.5. However, the energy
increment due to drag

�Edrag = −1

2
cd

(
I r

B
OS

)(
Iv

E
S + Iv

B
S

)T
Iv

B
S �t (56)

is not guaranteed to be negative due to the fully explicit discretization. A more implicit
discretization of this uncritical term can of course remedy this small impediment at the cost
of computational efficiency. Finally, the energy increment of the contact percussions

�Econstr = 1

2

(
uE + uB

)T
WP = 1

2

(
γ E + γ B

)T
P (57)

is exactly the contact work of the contact percussions. Hence, �Econstr is negative if the
contact force/impact law (52) is dissipative.

4.2 Explicit form of the time-stepping equations

In each time-step, the discretized equations of motion (49) have to be solved for uE. The
translational and rotational equations of motion (49) are therefore written as linear functions
in uE. Hereto, the generalized force direction W is split into its translational and rotational
contributions

W =
(

Wv

WΩ

)
, (58)

where Wv corresponds to the upper three rows of the generalized force directions W that
contribute to the translational part of the equations of motion and WΩ corresponds to the
three rows for the rotational part. In the following, the coordinate frames in which the math-
ematical objects are represented have been omitted which simplifies the notation.

For the translational degrees of freedom, solving (49) for vE leads to

vE = vB −�t
(
m−1cdv

B + gez

)
︸ ︷︷ ︸

�vfree

+m−1Wv P = vB + �vfree + m−1Wv P . (59)

Herein, the abbreviation �vfree has been introduced for the free flight contributions, consist-
ing only of the velocity change due to gravity and linear dissipation.
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Solving the discretized equations of motion for the rotational degrees of freedom is more
involved. After the separation of the terms for ΩB and ΩE, the rotational equation of motion
in (49) becomes

(
Θ + �t

2
Θ̃

)
ΩE =

(
Θ − �t

2
Θ̃

)
ΩB + WΩ P , (60)

where the skew-symmetric abbreviation Θ̃ = Ω̃
B
Θ + ΘΩ̃

B
is introduced and in which the

subscript K has been dropped for brevity. In order to arrive at the same structure as for the
translational stepping equations (59), the zero term �tΘ̃ΩB −�tΘ̃ΩB = 0 is added on the
right-hand side of (60) leading to

(
Θ + �t

2
Θ̃

)
ΩE =

(
Θ + �t

2
Θ̃

)
ΩB − �tΘ̃ΩB + WΩ P . (61)

After introducing the additional abbreviation

Θ� := Θ + �t

2
Θ̃, (62)

which can be interpreted as a modified numerical inertia matrix, and solving for ΩE by
pre-multiplying with Θ−1

� , the angular velocity difference equation takes the form

ΩE = ΩB −�t Θ−1
� Θ̃ ΩB

︸ ︷︷ ︸
�Ωfree

+Θ−1
� WΩ P = ΩB + �Ω free + Θ−1

� WΩ P . (63)

Herein, the term �Ω free contains the free flight contributions which are due to gyroscopic
effects.

The stepping equations (59) and (63) for the linear and angular velocity are assembled
in stepping equations for the generalized velocity u. Using the assembled mass matrix M�

and the free flight term �ufree

M� =
(

mI 3×3 O3×3

O3×3 Θ�

)
, �ufree =

(
�vfree

�Ω free

)
(64)

the stepping equations for the generalized velocity u read as

uE = uB + �ufree + M−1
� WP . (65)

4.3 Discrete inclusion problem

In each time-step, the stepping equations (65) are solved together with the inclusion (52)

−(
γ E + εγ B

) ∈ NC(P ),

which contains the combined contact and impact laws in discretized form. Hereto, the con-
tact velocity γ E = W TuE is expressed in the percussion P using the stepping equations (65),
which leads to

γ E = WT
(
uB + �ufree + M−1

� WP
)

= WTM−1
� WP + WT

(
�ufree + uB

)
.

(66)
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Fig. 11 (a) The block geometry: A nonregular octahedron, e.g., two pyramids with a regular quadrilateral
base. (b) Stroboscopic image of a simulation with slipping distance dependent μ

The expression γ E + εγ B in the inclusion problem (52) can therefore be written as

γ E + εγ B = WTM−1
� W︸ ︷︷ ︸

G

P + WT
(
�ufree + (1 + ε)uB

)
︸ ︷︷ ︸

c

, (67)

in which the Delassus matrix G and the vector c have been introduced. The inclusion prob-
lem (52) can therefore be written as

−(GP + c) ∈ NC(P ), (68)

in which P is the only unknown. Using theory from convex analysis [35], we can transform
the inclusion problem to an implicit proximal point equation

P = proxR
C
(
P − R−1(GP + c)

)
. (69)

Herein, proxR
C (·) is the proximal point operator on the convex set C in the metric R = RT >

0. The proximal point equation (69) is implicit in the contact percussions P . Iterative meth-
ods can be used to solve for the contact percussions P [1, 40]. Finally, the generalized
velocity uE can be computed with the stepping equation (65).

5 Simulations

This section documents two simulations, which show the capabilities of simulation tech-
niques presented in this paper and clearly demonstrate the importance of the influence of
rock shape on rockfall trajectory simulation. First, a simulation which illustrates the effect
of the slippage dependent friction model is presented in Sect. 5.1. A simulation which shows
the stabilization around the principal axis of largest inertia is discussed in Sect. 5.2.

5.1 Slippage dependent friction model: Simulation

In Sect. 3.7, the so-called “scarring” phenomenon has been explained: Upon impact with the
terrain, the rock does not immediately rebounce, but slides over the terrain, accumulating
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ground material in front of it which increases its resistance, causing it to topple and detach
from the terrain. To illustrate the scarring phenomenon and the behavior of the slippage
dependent friction model, introduced in Sect. 3.7, the motion of a planar square block is
considered which descends along an inclined slope of 45◦ (see Fig. 11(b)). For demonstra-
tion and visualization purposes, the example is chosen to be essentially a planar problem.
However, the RAMMS:rockfall module which uses the theory and methods of the current
paper is a fully three-dimensional code. The geometry of the body is chosen such that the
relevant dynamics can be represented in 2D although the simulation is actually performed in
3D. Hereto, the motion on an inclined plane is considered of a nonregular octahedron, being
two pyramids with a square base (see Fig. 11(a)). Only the square base of the octahedron
comes into contact with the inclined plane. The large width of the octahedron increases the
inertia around the in-plane axes and therefore stabilizes the planar motion.

The geometry of the body is specified in the body-fixed frame B . The octahedron has
a square base with dimensions 2 m × 2 m, which lies in the eB

x –eB
z -plane and a width of

10 m in the eB
y -direction. Assuming a homogeneous density ρ = 3000 kg m−3, the mass

becomes m = 80000 kg and the moments of inertia are Θy = 32,000 kg m2 and Θx = Θz =
816,000 kg m2 corresponding to the principal axis of inertia eB

x , eB
y and eB

z , respectively.
The terrain consists of a plane with slope angle α = 45◦. As the scarring phenomenon does
not involve an immediate rebounce, the coefficients of restitution for the Newtonian impact
law are chosen completely inelastic (e.g., εN = εT = 0). The slippage dependent friction
coefficient μ(s) runs from μmin = 0.2 to μmax = 1.3. The slippage decay parameter β =
20 s−1 and sliding distance friction proportionality constant κ = 0.7 m−1 are used. The
gravitational acceleration is chosen as g = 9.81 m s−2.

A projection of the resulting motion onto the inertial eI
x–eI

z -plane is shown in Fig. 11(b).
The body is released slightly above the slope; its body-fixed frame aligned with the inertial
frame. Upon impact with the slope, it quickly settles into a slip motion, because of the
completely inelastic impact law (εN = 0). Hence, a slip phase is commenced during which
two corner points of the square base of the body are in contact with the slope. The body
is sliding along the slope during this slip phase and the static force equilibrium in normal
direction to the plane

λN1 + λN2 = mg cosα (70)

holds, where λN1 and λN2 are the normal contact forces of the left and right contact point,
respectively. Furthermore, the body is not rotating during the slip phase and the static torque
equilibrium around the center of mass

(λN1 − λN2 − λT 1 − λT 2)r = 0 (71)

has to hold, where r = 1 m is half the width of the square base. The tangential contact
forces λT 1 and λT 2, which obey Coulomb’s friction law λT i ∈ μλNi SignγT i , amount to
λT 1 = −μλN1 and λT 2 = −μλN2 as γT i < 0 for the downward sliding along the slope.
Solving these equations for the normal contact forces yields

λN1 = 1

2
(1 − μ)mg cosα, λN2 = 1

2
(1 + μ)mg cosα. (72)

Considering that λN1 ≥ 0 has to hold for the left contact to remain closed, leads to the
condition μ ≤ 1. As the body keeps sliding down the slope, the slippage s increases and the
value of μ(s) increases in accordance with the slippage dependent friction model (46):

μ(s) = μmin + 2

π
(μmax − μmin) arctan(κs).
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Eventually, the condition μ ≤ 1 is violated. Because λN1 cannot become negative, the static
torque equilibrium is no longer valid and the left corner point loses contact, i.e., contact
point 1 opens. Thus, the block starts rotating. A second slip phase commences during which
there is only contact at the right corner point of the square base. The equations of motion in
this mode are

mẍ = λN2 sinα + λT 2 cosα = (sinα − μ cosα)λN2,

mz̈ = λN2 cosα − λT 2 sinα − mg = (cosα + μ sinα)λN2 − mg,

Θyϕ̈ = λN2r(sinϕ − cosϕ) − λT 2r(sinϕ + cosϕ) = λN2r
(
(1 + μ) sinϕ − (1 − μ) cosϕ

)
.

(73)

The normal contact velocity of the right contact point

γN2 = sinα ẋ + cosα ż + r(sinϕ − cosϕ)ϕ̇ (74)

vanishes during the second slip phase. Differentiation gives the normal contact acceleration

γ̇N2 = sinα ẍ + cosα z̈ + r(sinϕ − cosϕ)ϕ̈ + r(cosϕ + sinϕ)ϕ̇2. (75)

Substitution of the equations of motion (73) into (75) yields the expression

γ̇N2 =
(

1

m
+ r2

Θy

(1 − sin 2ϕ − μ cos 2ϕ)

)
λN2 − g cosα + r(cosϕ + sinϕ)ϕ̇2, (76)

which is linear in the contact force λN2. The contact acceleration γ̇N2 and contact force λN2

are, for a closed contact with γN2 = 0, inequality complementarity variables satisfying the
Signorini condition

0 ≤ γ̇N2 ⊥ λN2 ≥ 0 (77)

on acceleration level. The linear equation (76) together with the inequality complementar-
ity (77) constitutes the linear complementarity problem

γ̇N2 = A(ϕ,μ)λN2 + b(ϕ, ϕ̇)

0 ≤ γ̇N2 ⊥ λN2 ≥ 0
(78)

with

A(ϕ,μ) = 1

m

(
1 + 1

k2
(1 − sin 2ϕ − μ cos 2ϕ)

)
,

b(ϕ, ϕ̇) = −g cosα + r(cosϕ + sinϕ)ϕ̇2

(79)

and the abbreviation

k2 = Θy

mr2
. (80)

One may easily verify that A(ϕ,μ) > 0 for all ϕ if μ < μP , where

μP =
√

k4 + 2k2 (81)

is a critical friction coefficient. If μ > μP , then there exists an interval of ϕ for which
A(ϕ,μ) < 0. The linear complementarity problem has for A(ϕ,μ) < 0 and b(ϕ, ϕ̇) > 0
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multiple solutions and for A(ϕ,μ) < 0 and b(ϕ, ϕ̇) < 0 no solution. The phenomenon,
which occurs for values of μ larger than the critical friction coefficient μP , is known as
the Painlevé paradox [32]. The contact force during the second slip phase is given by ratio

λN2 = − b(ϕ, ϕ̇)

A(ϕ,μ)
, (82)

with A(ϕ,μ) > 0 and b(ϕ, ϕ̇) < 0. The angle ϕ(t) increases during the slip phase and the
value of A(ϕ,μ) lowers whereas b(ϕ, ϕ̇) rises, i.e. both tend toward zero. Typically, the
contact force first drastically increases. Contact may be lost through two different scenarios

1. The value of b(ϕ, ϕ̇) vanishes whereas A(ϕ,μ) > 0. This means that the increase of the
contact force is followed by a rapid decrease to zero. The block simply detaches from the
slope as the contact force vanishes.

2. The value of A(ϕ,μ) vanishes, whereas b(ϕ, ϕ̇) = 0. The contact force tends to infinity
but with a bounded impulse. This is known as a frictional catastrophe. The contact opens
impulsively, although no collision occurred.

In [15], it has been proven that the second scenario may only occur if the friction coefficient
is sufficiently larger than the critical value μP of the Painlevé paradox. Performing a similar
calculation as in [15], we obtain the critical value for the frictional catastrophe

μC = 2

√
k4 + 2k2

3
= 2√

3
μP . (83)

For the chosen parameter values, it holds that k2 = 2
3 which yields the critical friction

coefficients μP ≈ 0.9798 and μC ≈ 1.1314. The maximal friction coefficient μmax = 1.3 is
larger than μC and a frictional catastrophe may for certain initial conditions occur. However,
in the presented simulation, the second slip phase ends with a simple detachment. The block
enters a free flight phase during which the slipping distance s decays exponentially with the
exponential time constant τ = β−1. Upon the next impact, the same process starts all over
again.

5.2 Stabilization around the principal axis of largest inertia

As observed in the field, rocks jumping down a hill build up rotational speed and tend to
stabilize their angular velocity around the principal axis of largest inertia. Loosely speaking,
tabular shaped rocks tend to roll down like a wheel, especially on meadow-type terrain. This
phenomenon is also reported in [16] and it is suggested that tabular shaped rocks gradually
become rounded and wheel-like due to sharp corners breaking off during the descent.

In order to give a physical explanation for the observed phenomenon, one may try to
compare it with a similar idealized mechanical problem. It is readily known that the up-right
rolling of a disk on a rough plane is stable above a critical speed, i.e., for a homogeneous
thin disk with radius r the critical rotation speed is given by Ω2

c = 1
3

g

r
[4]. However, this

does not fully explain that also a tabular shaped rock, which does not roll but rather bumps
down the slope, also stabilizes around the principal axis of largest inertia. In this respect, it
is noteworthy to consider a freely rotating body, e.g. a rock in the air, which is known to
have stable body rotations around the smallest and largest principal axes of inertia whereas
the rotation around the middle axis is unstable. Moreover, the stability of the rolling motion
of an ellipsoidal body on a rough plane has been shown to be governed by parametric res-
onance phenomena as the periodic rise and fall of the center of mass induces a parametric
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Fig. 12 (a) The block geometry. (b) Plot of the angular velocity components over time

excitation in the equation of motion [21]. The parametric resonances lead to highly com-
plicated stability regions in the parameter space. The stabilization phenomenon in rockfall
is therefore far from trivial. In this section, we will show that the stabilization phenomenon
around the principal axis of largest inertia is present in the numerical simulation of a block
on an inclined plane.

We consider a box shaped block with side lengths lx = 2.5 m, ly = 3 m, lz = 1 m as
depicted in Fig. 12(a). Furthermore, we assume that the block has a homogeneous mass dis-
tribution ρ = 3000 kg m−3. This results in a total mass m = 22,500 kg and the three distinct
principal moments of inertia Θx = 18,750 kg m2, Θy = 13,594 kg m2, Θz = 28,594 kg m2.
The order Θz > Θx > Θy of the principal moments of inertia implies that the free body
rotations about eB

y and eB
z are stable whereas rotation about eB

x is unstable. The simula-
tion domain consists of a plane with slope angle 27◦. The coefficients of restitution for the
Newton impact law are chosen completely inelastic (e.g. εN = εT = 0). The friction coef-
ficient is chosen quite high μ = 10 to ensure that the contacts never glide. The block is
released slightly above the ground with an initial translational velocity ‖Ivs‖ = 28 m s−1

parallel to the slope and an initial angular velocity with the components Ωx = Ωz = 0,
Ωy = 20.8 rad s−1 in the body fixed frame. This corresponds to an angular velocity around
the axis with the smallest principal moment of inertia Θy .

The resulting development of the angular velocity components is plotted against time
in Fig. 12(b). During the first 25 seconds, the block keeps rotating around eB

y but at every
impact tiny numerical errors in the generalized force directions of the contact forces and the
contact percussions lead to Ωx and Ωz becoming nonzero causing a slight misalignment of
the body to the slope. This misalignment eventually triggers an energy transfer into the other
degrees of freedom. Finally, the body predominantly rotates around the eB

z axis.
We conclude that the proposed simulation technique, which explicitly takes rock shape

into account, is able to describe the observed wheel-like motion of tabular shaped rocks.
This insight is important for rockfall research because it indicates that there are motions,
which rocks can develop during run-out that result in straight and long run-outs, particularly
for tabular and rounded shaped rocks.
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Fig. 13 Graphical user interface of the RAMMS rockfall module

6 Conclusions

In the present paper, state-of-the-art simulation techniques of nonsmooth contact dynamics
and multibody dynamics have been applied to and adapted for the efficient simulation of
rockfall trajectories. The presented method allows for the full three-dimensional simulation
of rockfall events on arbitrary slopes and with arbitrary convex rock geometries. The geom-
etry of the rock can be defined from point clouds, which are obtained from laser scans of
real rocks in the field. The terrain geometry is constructed by bilinear interpolation of height
values which are supplied on a regular uniform grid. The interaction of the rock with the ter-
rain is modeled using hard unilateral constraints, which are numerically better tractable and
allow for larger time-step sizes than the penalty approach. The time-integration scheme em-
ployed is energetically consistent to guarantee reliable energy information over the whole
trajectory. The introduction of parameter fields for the friction coefficient μ, the parame-
ter of restitution εN and other model parameters makes the model highly configurable and
adaptable for the special needs of rockfall dynamics, where rocks encounter varied terrain
properties over the run-out zone (rock, bush, meadow).

The simulation tool developed in this paper forms the core of the RAMMS rockfall mod-
ule [8]. A screenshot of the graphical user interface is shown in Fig. 13. A variation in release
position and orientation, as is observed from hazardous rock masses, allows for the statistical
variability of rockfall trajectories required by engineers for rockfall hazard assessment [8].

The rock–forest interaction is modeled in the present paper by a simple drag force, which
cannot describe the scattering effect caused by collisions with individual trees (sometimes
referred to as the Galton box effect). However, a more elaborate forest model which includes
cylindrical objects representing trees may seamlessly be incorporated in the presented non-
smooth contact dynamics approach. Further research is needed to develop a forest model,
which accounts for the finite strength of trees. The RAMMS rockfall module, of which the
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simulation techniques are documented in this paper, is currently being tested and validated
by rockfall experts through a comparison with field data.

The main merits of the paper for the research on rockfall dynamics are:

1. The influence of shape on the rolling behavior of bodies can be studied with the presented
simulation method. As an example, the phenomenon of preferred rolling directions has
been addressed in Sect. 5.2. The stabilization phenomenon around the principal axis of
largest inertia causes a wheel-like behavior of the boulder and, therefore, greatly in-
creases its run-out distance. The influence of rock shape is therefore crucial in rockfall
dynamics and it is quintessential that rockfall simulation tools can properly reproduce
dynamic phenomena induced by rock shape.

2. A novel friction model, which involves a slippage dependent friction coefficient, has been
introduced in this paper. Using this friction model, it is possible to describe the scarring
effect of rocks on the terrain, i.e., rocks tend to plough into the ground material, slide,
and then lift off.

Although the paper has a clear focus on the application of rockfall, these merits may equally
be of importance for other research fields. The gained insight on shape influence may be of
importance for vibratory feeders and other conveyor systems for small parts, whereas the
slippage dependent friction model may be used for the description of abrasive processes
such as cutting processes in machine tool manufacturing.
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