1,800 research outputs found
Comparison of robust optimization and info-gap methods for water resource management under deep uncertainty
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.This paper evaluates two established decision-making methods and analyzes their performance and suitability within a water resources management (WRM) problem. The methods under assessment are info-gap (IG) decision theory and robust optimization (RO). The methods have been selected primarily to investigate a contrasting local versus global method of assessing water system robustness to deep uncertainty, but also to compare a robustness model approach (IG) with a robustness algorithm approach (RO), whereby the former selects and analyzes a set of prespecified strategies and the latter uses optimization algorithms to automatically generate and evaluate solutions. The study presents a novel area-based method for IG robustness modeling and assesses the applicability of utilizing the future flows climate change projections in scenario generation for water resource adaptation planning. The methods were applied to a case study resembling the Sussex North Water Resource Zone in England, assessing their applicability at improving a risk-based WRM problem and highlighting the strengths and weaknesses of each method at selecting suitable adaptation strategies under climate change and future demand uncertainties. Pareto sets of robustness to cost are produced for both methods and highlight RO as producing the lower cost strategies for the full range of varying target robustness levels. IG produced the more expensive Pareto strategies due to its more selective and stringent robustness analysis, resulting from the more complex scenario ordering process.This work was financially supported by the UK Engineering and Physical Sciences Research
Council, HR Wallingford and The University of Exeter through the STREAM Industrial
Doctorate Centre. The authors are grateful to Dr Steven Wade, now at the Met Office, and Chris
Counsell of HR Wallingford for providing data for the Sussex North case study
Gyroscopes based on nitrogen-vacancy centers in diamond
We propose solid-state gyroscopes based on ensembles of negatively charged
nitrogen-vacancy () centers in diamond. In one scheme, rotation of
the nitrogen-vacancy symmetry axis will induce Berry phase shifts in the electronic ground-state coherences proportional to the solid angle
subtended by the symmetry axis. We estimate sensitivity in the range of
in a 1 sensor volume using
a simple Ramsey sequence. Incorporating dynamical decoupling to suppress
dipolar relaxation may yield sensitivity at the level of . With a modified Ramsey scheme, Berry phase shifts in the
hyperfine sublevels would be employed. The projected sensitivity
is in the range of , however the smaller
gyromagnetic ratio reduces sensitivity to magnetic-field noise by several
orders of magnitude. Reaching would represent
an order of magnitude improvement over other compact, solid-state gyroscope
technologies.Comment: 3 figures, 5 page
Development and test of advanced composite components. Center Directors discretionary fund program
This report describes the design, analysis, fabrication, and test of a complex bathtub fitting. Graphite fibers in an epoxy matrix were utilized in manufacturing of 11 components representing four different design and layup concepts. Design allowables were developed for use in the final stress analysis. Strain gage measurements were taken throughout the static load test and correlation of test and analysis data were performed, yielding good understanding of the material behavior and instrumentation requirements for future applications
Understanding the performance of water supply systems during mild to extreme droughts
This project assessed the performance of different types of public water supply systems in England and Wales in a range of droughts, including those that are more severe than the worst droughts in the historical record
Evidence That the P\u3csub\u3ei\u3c/sub\u3e Release Event Is the Rate-Limiting Step in the Nitrogenase Catalytic Cycle
Nitrogenase reduction of dinitrogen (N2) to ammonia (NH3) involves a sequence of events that occur upon the transient association of the reduced Fe protein containing two ATP molecules with the MoFe protein that includes electron transfer, ATP hydrolysis, Pi release, and dissociation of the oxidized, ADP-containing Fe protein from the reduced MoFe protein. Numerous kinetic studies using the nonphysiological electron donor dithionite have suggested that the rate-limiting step in this reaction cycle is the dissociation of the Fe protein from the MoFe protein. Here, we have established the rate constants for each of the key steps in the catalytic cycle using the physiological reductant flavodoxin protein in its hydroquinone state. The findings indicate that with this reductant, the rate-limiting step in the reaction cycle is not protein–protein dissociation or reduction of the oxidized Fe protein, but rather events associated with the Pi release step. Further, it is demonstrated that (i) Fe protein transfers only one electron to MoFe protein in each Fe protein cycle coupled with hydrolysis of two ATP molecules, (ii) the oxidized Fe protein is not reduced when bound to MoFe protein, and (iii) the Fe protein interacts with flavodoxin using the same binding interface that is used with the MoFe protein. These findings allow a revision of the rate-limiting step in the nitrogenase Fe protein cycle
An Arabic Version of the Spiritual Well-Being Scale
This article reports on two studies to develop and validate an Arabic language version of the Spiritual Well-Being Scale (SWBS). The first study was a pilot study at a major government university in Jordan (N = 75, students). The second and main study was conducted in 5 large regional hospitals in Jordan (N = 63, patients). The SWBS was translated from English to Arabic and reviewed by an expert panel for language, cultural, and spiritual consistency. The Arabic version of the SWBS was revised after the results of the pilot study and further reviewed by an expert panel. The resulting data were subjected to descriptive and factor analysis. Results showed that the final version of the SWBS used in the main study had a two-factor structure consistent with previous studies. Descriptive data for a range of demographic variables are presented. Issues of inadequate translation and lack of variation in responses for some items are identified and the results discussed in light of dominant Islamic theological frameworks. © 2012 Taylor and Francis Group, LLC
A strategy for the characterization of minute chromosome rearrangements using multiple color fluorescence in situ hybridization with chromosome-specific DNA libraries and YAC clones
The identification of marker chromosomes in clinical and tumor cytogenetics by chromosome banding analysis can create problems. In this study, we present a strategy to define minute chromosomal rearrangements by multicolor fluorescence in situ hybridization (FISH) with whole chromosome painting probes derived from chromosome-specific DNA libraries and Alu-polymerase chain reaction (PCR) products of various region-specific yeast artificial chromosome (YAC) clones. To demonstrate the usefulness of this strategy for the characterization of chromosome rearrangements unidentifiable by banding techniques, an 8p+ marker chromosome with two extra bands present in the karyotype of a child with multiple anomalies, malformations, and severe mental retardation was investigated. A series of seven-color FISH experiments with sets of fluorochrome-labeled DNA library probes from flow-sorted chromosomes demonstrated that the additional segment on 8p+ was derived from chromosome 6. For a more detailed characterization of the marker chromosome, three-color FISH experiments with library probes specific to chromosomes 6 and 8 were performed in combination with newly established telomeric and subtelomeric YAC clones from 6q25, 6p23, and 8p23. These experiments demonstrated a trisomy 6pter6p22 and a monosomy 8pter8p23 in the patient. The present limitations for a broad application of this strategy and its possible improvements are discusse
Engaging stakeholders in research to address water-energy-food (WEF) nexus challenges
The water–energy–food (WEF) nexus has become a popular, and potentially powerful, frame through which to analyse interactions and interdependencies between these three systems. Though the case for transdisciplinary research in this space has been made, the extent of stakeholder engagement in research remains limited with stakeholders most commonly incorporated in research as end-users. Yet, stakeholders interact with nexus issues in a variety of ways, consequently there is much that collaboration might offer to develop nexus research and enhance its application. This paper outlines four aspects of nexus research and considers the value and potential challenges for transdisciplinary research in each. We focus on assessing and visualising nexus systems; understanding governance and capacity building; the importance of scale; and the implications of future change. The paper then proceeds to describe a novel mixed-method study that deeply integrates stakeholder knowledge with insights from multiple disciplines. We argue that mixed-method research designs—in this case orientated around a number of cases studies—are best suited to understanding and addressing real-world nexus challenges, with their inevitable complex, non-linear system characteristics. Moreover, integrating multiple forms of knowledge in the manner described in this paper enables research to assess the potential for, and processes of, scaling-up innovations in the nexus space, to contribute insights to policy and decision making
Self-Perceived Coordinated School Health Coordinator Leadership Styles and Practices
School-aged children’s health needs have changed over the last several decades to the present day population of many overweight and obese children with health complications (Centers for Disease Control & Prevention, 2015). Tennessee has implemented the Centers for Disease Control and Prevention’s (CDC) model for Coordinated School Health (CSH) in all public schools. Leading each school district’s program is a CSH Coordinator. The role of CSH Coordinators is to provide leadership to district and school administrators while effectively and efficiently implementing the CSH program (Wechsler, 2012).
The purpose of this quantitative study was to explore the self-perceived leadership styles and practices of Tennessee CSH Coordinators. The focus of many public health initiatives in America is childhood health. Research conducted by the CDC has shown that school health interventions have been effective in improving physical activity, comprehensive health education, and nutrition. Good health is essential for academic success (McKenzie & Richmond, 1998). CSH Coordinators are the leaders of health for school systems (Wechsler, 2012). How these individuals implement the CDC model for CSH varies based on leadership style and practices.
Many studies exist on the topic of CSH but few consider the people leading the program (Strickland, 2012). By obtaining information regarding the leadership style of current CSH Coordinators, this research provides insight into best practices and continuing education for current and future leaders.
The study population consisted of all 137 Tennessee CSH Coordinators. Seventy (51.1%) CSH Coordinators participated in the demographic, best practices, and Multifactor Leadership Questionnaire (Appendix A). Findings indicated that all of the CSH Coordinators self-reported leadership style was transformational. There were no significant differences reported between the degree to which CSH Coordinator identified as transformational leaders compared by years of experience, gender, school district size, education level, and number of best practices implemented
- …
