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Abstract 

This paper evaluates two established decision making methods and analyses their performance 

and suitability within a Water Resources Management (WRM) problem. The methods under 

assessment are Info-Gap decision theory (IG) and Robust Optimisation (RO). The methods have 

been selected primarily to investigate a contrasting local vs global method of assessing water 

system robustness to deep uncertainty but also to compare a robustness model approach (IG) 

with a robustness algorithm approach (RO), whereby the former selects and analyses a set of pre-

specified strategies and the latter uses optimisation algorithms to automatically generate and 

evaluate solutions. The study presents a novel area-based method for IG robustness modelling 

and assesses the applicability of utilising the Future Flows climate change projections in scenario 

generation for water resource adaptation planning. The methods were applied to a case study 
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resembling the Sussex North Water Resource Zone in England, assessing their applicability at 

improving a risk-based WRM problem and highlighting the strengths and weaknesses of each 

method at selecting suitable adaptation strategies under climate change and future demand 

uncertainties. Pareto sets of robustness to cost are produced for both methods and highlight RO 

as producing the lower costing strategies for the full range of varying target robustness levels. IG 

produced the more expensive Pareto strategies due to its more selective and stringent robustness 

analysis, resulting from the more complex scenario ordering process.  

1    Introduction  

Current water management systems work under the assumption that natural systems fluctuate 

within an unchanged envelope of variability (Milly et al. 2008). However, substantial 

anthropogenic change of the Earth’s climate is modifying patterns of rainfall, river flow, glacial 

melt and groundwater recharge rates across the planet, undermining many of the stationarity 

assumptions upon which water resources infrastructure has been historically managed (IPCC 

2007). This is creating a potentially vast range of possible futures that could threaten the 

reliability of vital regional water supplies. This combined with increased urbanisation and 

rapidly growing regional populations is putting pressures on finite water resources (Environment 

Agency 2013). Water companies and utilities worldwide are now under pressure to modernise 

their management frameworks and approaches to decision making in order to identify more 

sustainable and cost-effective water management adaptations that are reliable in the face of 

uncertainty. 

Water management regulatory frameworks differ around the world but in many countries 

similar plans are developed under the auspices of Integrated Water Resources Management 

(IWRM) programmes. For instance, water utilities in the UK are required to produce Water 
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Resource Management Plans (WRMPs) every five years that outline their long-term strategies 

for maintaining a secure water supply to meet anticipated demand levels. These plans justify any 

new demand management or water supply infrastructure needed and validate management 

decisions (Environment Agency et al. 2012). Similar IWRM planning is fostered around the 

world as recommended by the Global Water Partnership (GWP) with the vision of a water secure 

world (Falkenmark and Folke 2000), including increasing regard given to sustainable water 

planning and policy in developing countries (Bjrklund 2001). Modern day IWRM planning is a 

multi-objective problem where decision makers are required to develop strategic adaptation 

plans to maximise the security of water supplies to future multiple uncertainties, whilst 

minimising costs, resources usage, energy requirements and environmental impact (Charlton and 

Arnell 2011; Environment Agency 2013).  

The current approach within the UK, as stated in the Environment Agency’s (EAs) Water 

Resources Planning Guideline for England and Wales (Environment Agency et al. 2012) and the 

Economics of Balancing Supply and Demand (EBSD) (NERA 2002), is to produce a “best 

estimate” of future deployable output (or system yield). Using climate change projections and 

regional population forecasts, the aim is to deliver an acceptable (i.e. target) level of service for 

the least cost given the projected changes in supply and demand. This produces a single best 

estimate of the future supply-demand balance over time and encourages a “predict and provide” 

type approach to WRM over a single projected future or pathway (Lempert and Groves 2010). 

Target Headroom (Environment Agency et al. 2012) is then added as a “safety margin”, defined 

as “the minimum buffer that a prudent water company should allow between supply and demand 

to cater for specified uncertainties in the overall supply-demand resource balance” (UKWIR 

1998) and is calculated by applying probability density functions (pdfs) to all sources of 
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uncertainty in supply and demand (Hall et al. 2012a). However, the current EBSD approach does 

not fully explore the wider range of possible futures, the so called “deep” uncertainties (Walker 

et al. 2013a), or the full range of potential solutions and trade-offs. Nor does it promote 

examination and security against the more extreme projected scenarios; such as severe changes 

in individual supply source availability at peak demand periods (Environment Agency et al. 

2012) or highly unexpected events (the so called black swans) (Bryant and Lempert 2010). It 

does not encourage the most robust or flexible strategies to be derived, but instead satisfies a 

single projected supply-demand balance over a short timescale of 25 years. 

To overcome this, extensive international research is being carried out to test and 

evaluate a wide range of prospective Decision Making Methods (DMMs), i.e. frameworks and 

approaches, which demonstrate notable potential in handling “deep” uncertainties in regard to 

WRM adaptive planning. Walker et al. (2013a) defines the point at which uncertainties become 

“deep” as when one can enumerate multiple plausible alternatives of the future but cannot rank 

the alternatives in terms of perceived likelihood. In this paper “deep” uncertainty is defined as 

above and a DMM, in a WRM context, denotes any method that helps a decision maker identify 

the “best” adaptation strategy(ies) over a long term planning horizon that are either automatically 

generated or selected from a range of pre-defined solutions. 

Popular DMMs include approaches such as; Robust Decision Making (Lempert and 

Collins 2007), Robust Optimisation (Ben-Tal et al. 2009), Decision Scaling (Brown 2010) and 

Info-Gap decision theory (Ben-Haim 2006), with a summary of such methods given by Ray and 

Brown (2015). The majority of established DMMs are developed to evaluate the robustness of a 

system, strategy or decision. Walker et al. (2013b) produced a review of conceptual approaches 

for handling deep uncertainties and concluded that further work needed to be done on the 
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systematic comparison of approaches and computational tools for handling robust planning to 

better derive the potential strengths and weaknesses of the various approaches. Comparisons of 

Info-Gap and Robust Decision Making for WRM found the methods selected differing “best” 

solutions (Matrosov et al. 2013), which was also demonstrated by Hall et al. (2012b) when both 

methods were applied to evaluate robust climate policies. Furthermore an evaluation of 

robustness measures from different DMMs discovered each DMM ranked solutions to differing 

performance levels (Herman et al, 2015). Numerous more individual and comparative DMMs 

studies have been conducted within the context of WRM adaptive planning with specific 

attention to a measure of robustness  (Ghile et al. 2014; Haasnoot et al. 2013; Jeuland and 

Whittington 2014; Kwakkel et al. 2014; Lempert and Groves 2010; Li, et al. 2009; Moody and 

Brown 2013; Paton et al. 2014a; Tingstad et al. 2013; Turner et al. 2014a; Whateley et al. 2014), 

including investigations into risk-based metrics for analysing adaptation strategy performance 

(Borgomeo et al. 2014; Brown and Baroang 2011; Hall et al. 2012a; Kasprzyk et al 2012; Turner 

et al. 2014b) and various new scenario-based methods for ordering and mapping the deep 

uncertainties within modern WRM problems (Beh et al. 2015a; Kang and Lansey 2013; 2014; 

Nazemi et al. 2013; Singh et al. 2014; Weng et al. 2010). However further testing and 

comparison of DMMs on real world case studies could be highly beneficial especially in regard 

to evaluating alternative definitions and calculations of system robustness to uncertainty, the 

methods of scenario generation and the process of adaptation strategy selection and evaluation. 

This paper presents a comparison of Info-Gap (IG) and Robust Optimisation (RO) 

methods. Both methods are tested on a real world WRM adaptation case study, with the primary 

aim to investigate a contrasting local vs global method of robustness assessment. The methods 

chosen also allow a comparison of a robustness tool (IG) with an algorithm approach (RO), 
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whereby the former selects and analyses a set of pre-specified strategies and the latter uses 

optimisation algorithms to automatically generate and evaluate solutions. 

Examples of the application of IG decision theory in the development of long-term water 

management strategies can be found in Hipel and Ben-Haim (1999), Woods et al. (2011), 

Korteling et al. (2013), Matrosov et al. (2013) and in the development of robust climate policies 

in Hall et al. (2012b). IG was found to resolve a lot of the weaknesses in current WRM 

predictive target headroom approaches by analysing multiple plausible representations of the 

future and establishing a suitable robustness measure to uncertainty; however it was not clear 

how the local assessment method itself impacted on the differing solutions produced in regard to 

alternative methods, nor is it clear as to the impact attributed to the origin of the IG analysis. 

Examples of the application of RO in the development of long-term water management 

strategies can be found in Kwakkel et al. (2014), Giuliani et al. (2014), Herman et al. (2014), 

Kang and  Lansey (2013) and Beh et al. (2015b) and for adaptive policymaking in Hamarat et al. 

(2012). Within this research it was found that RO could handle complex, deeply uncertain 

problems with large numbers of possible solutions. It was also able to derive candidate strategies 

of more precise sequencing over the planning horizon than more traditional approaches. 

This study presents a novel area-based method for IG robustness modelling. The area-

based methodology is designed to improve the IG robustness search process for handling 

uncertainties based on discrete scenario projections that are not monotonically increasing. 

Incrementally sampling uncertainties in proportional increases across all uncertain variables 

leads to a number of scenario combinations being ignored (Matrosov et al. 2013). The area-

based method advances this by assessing all potential scenario combinations within each 

incrementally expanding robustness analysis (see section 2.5). Furthermore the applicability of 
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utilising the Future Flow climate change projections (Prudhomme et al. 2012) in scenario 

generation for water resource adaptation planning is demonstrated. 

2   Methodology 

First the general WRM problem is described followed by the concepts of risk, robustness, 

strategies and costs before giving a brief description of the two decision making methods under 

review. The case study is then outlined followed by results and discussion exploring the 

performance of each method and evaluating the varying concepts of robustness. 

2.1   Water Resource Management Problem 

The WRM problem is defined here as the long-term water resources planning problem of supply 

meeting future demand. The aim is to, for a given long-term planning horizon, determine the best 

adaptation strategy (i.e. set of interventions scheduled across the planning horizon) that are 

required to upgrade the existing regional WRM system that will satisfy the multiple objectives of 

maximising the robustness of future water supply whilst minimising the total cost of 

interventions required. Robustness of water supply (see section 2.3) is evaluated across a number 

of different, pre-defined supply and demand scenarios which are used to represent uncertain 

future climate change and population growth. The above problem is solved by using the two 

different decision making methods, each with its specific implementation. The results obtained 

by using the different decision making methods are compared after all solutions are re-evaluated 

using the definitions of risk, robustness and costs outlined below. 

A water resource network model has been developed that simulates, using a daily time 

step, the supply and demand balance of a regional water supply system over a pre-established 

time horizon. Different future scenarios and adaptation strategies can be input to the system, 
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analysing the performance of each system combination via risk of water deficit results. The 

simulation model is written in the Python programming language, and scenarios and strategies 

can either be input manually or selected automatically using an optimisation algorithm (see 

section 2.5).   

2.2   Risk of a Water Deficit 

The failure of the WRM system is defined here as water supply not meeting the demand 

required. The risk of water deficit (Rd) is defined in Eq. (1) in the likelihood x magnitude form: 

𝑅𝑑 =  (
∑ 𝑑𝑗

𝑁𝑗

𝑗=1

𝑇
) ×  ∑ ∆𝑉𝑗

𝑁𝑗

𝑗=1

 

 

  (1) 

Where: (dj) = a day with a water deficit; (T) = the total number of days in the planning horizon; 

(ΔV) = the volume of a water deficit recorded in day j (Ml); (j) = the time step index and (Nj) = 

the total number of timesteps in the planning horizon. 

The circumstances that entail a ‘water deficit’ occurring are dependent on the system 

under study. For instance, in the case study to follow (section 3) a deficit day is counted if the 

water in the main reservoir falls below an unacceptable (threshold) level. This is allowed to 

occur occasionally so far as the likelihood and magnitude of occurrence (calculated above as a 

single risk-based metric) does not exceed a desired target level of system performance (𝑟𝑐). The 

risk level of the system must remain at or below this level (𝑖. 𝑒. 𝑅𝑑  ≤  𝑟𝑐) for the system to be 

deemed as performing acceptably under a given future scenario. 

2.3   Robustness of Water Supply 

Robustness is commonly described in WRM literature as the degree to which a water supply 

system performs at a satisfactory level across a broad range of plausible future conditions 

(Groves et al. 2008). Robustness of long-term water supply is defined here as the fraction (i.e. 
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percentage) of future supply and demand scenarios that result in an acceptable system 

performance (Paton et al. 2014a; 2014b; Beh et al. 2015b), i.e. as follows:  

𝑅𝑜𝑏 = (𝑆
𝑈⁄ ) 

   (2) 

Where: (S) = the number of scenarios in which the system performs at an acceptable level of risk 

and (U) = the total number of scenario combinations (of supply and demand) considered. For 

example, if 90 (𝑆) out of 100 (U) scenarios are deemed to have been met acceptably then the 

robustness of the water supply is 0.9, i.e. 90%. The acceptable performance level is defined as a 

risk of water deficit [see Eq. (1)] being below the target level of risk which is pre-specified for 

the duration of the long-term planning horizon. 

2.4   Adaptation Strategies 

Different adaptation strategies (q) can be produced by employing different combinations of 

various water resource options (intervention options) arranged over a long-term planning 

horizon. The total costs of strategies in the form of Net Present Values (NPVs) are derived using 

Eq. (3).  

𝑁𝑃𝑉𝑞 = ∑ ∑ [
𝐶𝑖

(1 + 𝑟)(𝑗−1)𝑑𝑡
+

𝑂𝑖𝑗𝑑𝑡

(1 + 𝑟)(𝑗−1)𝑑𝑡
]

𝑁𝑗

𝑗=1

𝑁𝑖

𝑖=1

 

 

(3) 

Where: (i) = the intervention option index, (Ni) = the total number of intervention options in the 

strategy (Ci) = the estimated capital cost of intervention option i (£M), (Oi) = the estimated 

operation cost of intervention option i (£M/yr), (r) = the annual discount rate (a rate of 0.03 

selected for this investigation), (j) = the time step index, (dt) = the timestep duration (years) and 

(Nj) = total number of timesteps in the planning horizon. 

2.5   Decision Making Methods 

Info-Gap Decision Theory (IG)  
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Info-Gap (IG) decision theory is a non-probabilistic decision theory that seeks to optimise 

robustness to failure, or opportunity for windfall success, under deep (or “severe”) uncertainty 

(Ben-Haim 2001). IG favours robustness of satisficing in its approach to decision making. A 

strategy of satisficing robustness can be described as one that will satisfy the minimum 

performance requirements (performing adequately rather than optimally) over a wide range of 

potential scenarios even under future conditions that deviate from the best estimate (Ben-Haim 

2001; 2010). This concept of satisficing minimum requirements is similar to that of setting 

constraints in Robust Optimisation, however IG evaluates the robustness of an adaptation 

strategy as the greatest level of localised uncertainty that can be negotiated while maintaining 

these specified performance requirements (Hipel and Ben-Haim 1999). The Info-Gap robustness 

function, Eq. (4), expresses the robustness to uncertainty (�̂�) of an adaptation strategy (q) as the 

maximum horizon of uncertainty (𝛼) explored over a range of potential future scenarios of 

supply and demand (𝑢 ∈ 𝑈), for which the maximum risk of water deficit (Rd) occurring 

[calculated using Eq. (1)] rises no greater than the target level of water deficit risk (𝑟𝑐), i.e. 

minimal risk requirements are always satisfied (Ben-Haim 2006): 

�̂�(𝑞, 𝑟𝑐) = max {𝛼: ( max
𝑢𝜖𝑈(𝛼,𝑢)

𝑅𝑑(𝑞, 𝑢)) ≤ 𝑟𝑐} (4) 

Where (u) = an individual discrete scenario combination (of supply and demand) and (U) = the 

total range (number) of scenario combinations considered. The Info-Gap robustness analysis 

begins from a “most likely” scenario combination (ũ) before expanding the analysis out over 

widening uncertain parameters (𝛼). Fig. 1 gives a diagrammatic representation of the Info-Gap 

assessment exploring two uncertain vectors (supply (U1) and demand (U2)) until the target 

(unacceptable) level of system performance is exceeded (𝑟𝑐). Opportuneness is also displayed, 
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calculated as the shortest distance of uncertainty traversed to reach a highly desirable 

outcome (𝑟𝑤). 

A novel area-based method for IG robustness modelling of uncertain future supply and demand 

scenarios is presented in Fig. 2. This method is introduced in order to directly utilise the discrete 

Future Flow scenario projections (Prudhomme et al. 2012) within the IG analysis which 

traditionally uses continuous uncertainty variables. Each flow projection is highly variable, thus 

defining each horizon expansion as a function of increasing distance (𝛼) cannot easily be 

established. The area-based method (Fig. 2) aims to solve this issue by first ordering the 

scenarios (both supply and demand) by their rank of severity (see section 3.2). A “most likely” 

scenario combination (ũ) is selected; however, the IG analysis now expands out over all 

adjacently ranked scenarios (the next higher and lower ranked scenarios of supply and demand) 

in an asymmetric search pattern until no more immediate adjacent scenarios satisfy (𝑟𝑐) (Fig. 2). 

This robustness search technique allows more scenario combinations to be analysed and allows 

the robustness search to continue until all scenario expansion routes end in system failure. This 

calculates the expanding horizon of uncertainty (𝛼) as a function of total area rather than as a 

function of maximum distance (Fig. 3) and the IG robustness level is calculated as a sum of all 

successful (𝛼′) deviations (total no. of local scenarios (u) satisfied): 

�̂�(𝑞, 𝑟𝑐) = ∑ 𝛼′ {𝛼: ( max
𝑢𝜖𝑈(𝛼,𝑢)

𝑅𝑑(𝑞, 𝑢)) ≤ 𝑟𝑐 }

𝑈

𝑢= �̃�

 (5) 

In order to later compare the IG results with those of the RO assessment you then calculate the 

overall robustness to uncertainty as a percentage over all futures scenarios considered using Eq. 

(2), where (�̂� = 𝑆). 
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The severity ranking of demand scenarios is straightforward as they are typically projected in a 

severity order. However the supply scenario ranking and ordering can be performed in a number 

of ways. For this methodology each supply scenario is tested on the baseline historical water 

supply system configuration, with the level of system risk calculated and used to assign relative 

severity ranks to the scenarios.  

The selection of an appropriate starting point (ũ) within a theoretically unbounded region 

of uncertainty is a highly debated subject (Sniedovich 2007; 2012). For this analysis the median 

scenarios of supply and demand (following rankings as stated above) are selected for the primary 

IG run (defined as Umid). However, positions in the upper and lower quartile of scenario severity 

(defined as Uhigh and Ulow respectively) are also tested in order to quantify the sensitivity of the 

(ũ) selection. The number of start points selected for examination is deemed appropriate given 

the complexity of the case study and range of uncertainty examined. The range in supply and 

demand uncertainty is selected with great care and by considering a wide array of different 

data/information sources to produce a range of genuinely likely scenarios, as advised by 

Sniedovich (2007), detailed fully in section 3.2. 

Robust Optimisation (RO)  

Robust Optimisation (RO) involves the application of appropriate optimisation algorithms to 

solve problems in which a specific measure of robustness is sought against uncertainty (Ben-Tal 

et al. 2009; see Eq. (2) for the defintion used here). Optimisation can be defined as trying to find 

the best solution amongst a set of possible alternatives without violating certain constraints 

(Walker et al. 2013b). It is mostly employed to identify a single best estimate solution to a single 

objective problem (Bai et al. 1997). However, when dealing with multi-objectives and deep 

uncertainties this predictive approach cannot be used, since often a theoretically “optimum” 
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solution does not exist (Bankes 2011; Rosenhead et al. 1973). RO can overcome this difficulty 

by finding the best solutions as a set of global Pareto-optimal robust solutions across the full 

horizon of uncertainty (Coello 1999; Deb and Gupta 2006), leaving trade-offs among the various 

objectives out of the optimisation process and in the hands of the final decision maker (Ben-Tal 

and Nemirovski 1998; 2000; Bertsimas and Sim 2004). Although this approach is also not 

without its drawbacks, i.e. when deliberating on final trade-offs, as discussed by Beh et al. 

(2015b); however methods exist to aid the final decision process, such as value path plots 

(Geoffrion et al. 1972) and visual analytics (Reed and Kollat 2013). A detailed review of 

different aspects of optimisation within the WRM context can be found in Maier et al. (2014). 

A wide range of optimisation techniques are available for RO including, but not limited 

to: Genetic Algorithms (Deb and Pratap 2002; Kollat and Reed 2006), Particle Swarm 

Optimisation (Zarghami and Hajykazemian 2013), Ant Colony Optimisation (Dorigo et al., 

1996), Shuffled Frog Leaping Algorithms (Eusuff and Lansey 2003), Generalised Reduced 

Gradient Algorithms (Frank and Wolfe 1956), Linear Programing Techniques (Borgwardt 1987) 

or combined process approaches such as Many-Objective Visual Analytics (Fu et al. 2013), 

Many-Objective Robust Decision Making (MORDM) (Herman et al. 2014) or Borg Multi-

Objective Evolutionary Algorithms (MOEA) (Hadka and Reed 2012). 

For this WRM problem, the objective functions are the minimisation of cost [Eq. (3)] and 

maximisation of robustness [Eq. (2)]. The optimising algorithm selected for this study is the 

NSGAII, as its high performance and capabilities in handling multi-objective problems is well 

documented (Deb and Pratap 2002; Kollat and Reed 2006; Nicklow et al. 2009).  

The WRM daily time-step supply and demand simulation model (see section 2.1) is 

combined with the NSGAII optimisation algorithm, set-up using the R-programming language. 
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The algorithm requires three main data inputs; a pool of potential new intervention options (see 

section 3.2) from which to form combinations of new adaptation strategies, and the range of 

potential supply and demand scenarios. The NSGAII algorithm automatically forms a population 

of strategies and analyses their performance across all scenario combinations of supply and 

demand in the simulation model to the two objectives of cost and robustness. The best 

performing strategies are then carried forward, mutated at random (based on selected 

probabilities) and then re-analysed over several generations, with the aim of ultimately 

identifying the Pareto set of results for robustness vs cost, where all non-dominated strategy 

results are discovered. The parameters used for the RO analysis are listed in section 3.2 and 

further explanation of the NSGAII operation can be found in Deb and Pratap (2002).   

RO differs in its robustness analysis to IG in that it has been set up to assess the ‘global’ 

robustness of a strategy rather than performing a ‘local’ robustness examination. It tests a 

strategy’s performance over all potential scenario combinations when calculating robustness [Eq. 

(2)] rather than isolating a most likely scenario and performing a localised examination. 

3   Case Study 

This section aims to compare the contrasting mechanisms and outputs of two DMMs analysed 

(Info-Gap and Robust Optimisation) on a real world WRM case study of the Sussex North Water 

Resource Zone in the UK. It also assesses the applicability of using the Future Flows climate 

change projections in supply scenario generation for water resource adaptation planning. 

3.1   Case Study Description 

IG and RO are applied to a case study of Southern Water’s Sussex North Water Resource Zone 

(SNWRZ) shown in Fig. 4, a region in the South East of England that was listed as a region 
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under “a serious level of water stress” (Environment Agency 2007). The existing water resources 

for the SNWRZ system are shown in Fig. 4 and listed in Table 1.  

Water from all sources is treated at the Hardham Water Treatment Works (WTW). The 

minimum deployable output (MDO), which defines the water resource availability at the point at 

which it is most physically constrained and typically occurs in early autumn before the onset of 

winter recharge, is used to define the availability of new resource options (Southern Water 2009; 

2014). The priority order for abstraction of each resource (shown in Table 1) is based directly on 

the SNWRZ system order (Southern Water 2009). On each daily time step of the simulation 

model – river abstraction occurs first and reservoir abstraction last in order to meet the required 

demand. This allows the reservoir resource to remain as reserve storage until required (e.g. when 

demand levels are high or river flow levels are low). The aim of the WRM problem analysed 

here is to, for a given long-term planning horizon, determine the best adaptation strategy(ies) to 

upgrade the existing regional WRM system that will maximise the robustness of future water 

supply whilst minimising the total cost of interventions required [as defined in Eq. (2) and (3)].  

3.2   Case Study Set-Up 

The water resource simulation model (described in section 2.1) is set up for the Sussex North 

Water Resource Zone to simulate the daily supply-demand balance of the water system over a 50 

year planning horizon. A 50 year planning horizon has been selected to incorporate more climate 

change and demand uncertainty over time than a typical 25 year UK water company planning 

horizon. 

Adaptation Strategies 

A list of new potential water supply resources for the Sussex North Water Resource Zone was 

taken from Southern Water’s WRMP ‘feasible’ options list (Southern Water 2009). This 
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included the range of options derived from the final phase (Phase 3) of resource investigation 

and appraisal carried out by Atkins (2007). This created a pool of potential intervention options 

(see Table 2), from which adaptation strategies can be formed by implementing different 

combinations of the new supply options, arranged over the 50 year planning horizon. The 

planning horizon is further sub-divided into 10 year construction periods, producing five 

potential operational start points for each option within a strategy. This is to reduce the number 

of potential combinations of strategies, allowing swifter optimisation and easier pre-selection of 

strategies for the application of IG theory. 

The total cost of a strategy is calculated using the Net Present Value (NPV) approach shown in 

Eq. (3). The variation in water treatment costs of each individual resource option are included in 

the calculation of projected operational costs; however the uncertainties in changing water 

resource quality and the changing operational costs of individual options over time are not 

incorporated in this investigation due to low available data on these aspects. It should be noted 

that energy and water treatment costs are also highly variable and liable to change over time, but 

these uncertainties are beyond the scope of this investigation. The intervention options in Table 2 

include the list of potential new ‘supply’ additions to the system. Demand side options are also 

important considerations for addressing the supply-demand balance. However, due to the Sussex 

North Water Resource Zone being classified as a “serious water stress area” (Environment 

Agency 2007), compulsory Universal Metering (UM) of all properties has already been initiated 

and a set leakage program is underway, therefore further demand side options are not included as 

potential intervention options in this analysis. New resource options (Table 2) are implemented 

in the simulation model between existing supply resources 3 and 4 (Table 1). This allows reserve 

groundwater and stored water at Weir Wood reservoir to remain as storage until required. 
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Supply Scenarios  

There are various state-of-the art methods for producing scenarios to represent alternative 

plausible future conditions of a system (Mahmoud et al. 2009). In this analysis the application of 

using Future Flow scenarios (Prudhomme et al. 2012) to generate future projections for the 

region’s major contributing river flows and reservoir inflows is tested. The Future Flows project 

utilises the latest projections from the UK Climate Impact Programme (UKCIP) from the Met 

Office Hadley Centre. They provide 11 plausible realisations (all equally likely) of the river 

flows at various river gauging stations across England, Wales and Scotland and account for the 

impact of climate change to 2100 under a Medium emission scenario. 

The closest gauging site for Sussex North is at Iping Mill on the river Rother upstream of 

the Hardham extraction point (see Fig. 4). The flow data required downstream of the gauging 

station are extrapolated using a monthly flow factoring method (Arnell and Reynard 1996), 

which perturbs the historic river flow data to match the flow changes projected at the upstream 

gauge. Flow factors describe the percentage change in monthly average river flows over a 30 

year historic period (1961-1990) with those of a 30 year future period at Iping Mill. The 

limitation of a flow factor approach is that the historical sequencing of drought events is 

unchanged (Diaz-Nieto and Wilby 2005), such that if a drought event occurs after 10 years 

historically it would appear in every climate change scenario after 10 years and force a similar 

pathway of adaptation strategies. In order to test the adaptation strategies against a range of 

different naturally varying scenarios, the historical flows are resampled (Ledbetter et al. 2012) 

using 3 month seasonal blocks (Dec-Feb, Mar-May, Jun-Aug and Sep-Nov) to create new 

realisations of historical climate. In order to then impose the transient climate change signal of 

the Future Flows scenario within the resampled historical sequences a rolling flow factor method 
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is devised to produce factors for each year of 2015-2064. For example, to create flow factors for 

2015 a future flow period from 2000-2029 is compared with the 1961-1990 baseline, for 2016 

the future averaging period is advanced a single year to 2001-2030. The flow factors are then 

used to perturb the historic resampled river flow data at Hardham (Fig. 4) to provide 72 discrete 

supply scenarios. The same flow factors were used to perturb the inflows to Weir Wood reservoir 

and flows in the River Arun to ensure the system is modelling the same patterns of weather and 

climate change throughout the system at the same time. As the likelihoods of the different 

scenarios is not quantifiable the supply uncertainty is classified as “deep” (Walker et al. 2013a). 

However, IG theory still requires the selection of a “most likely” scenario starting point for the 

analysis despite the deep uncertainties. The selection of these starting points is detailed in section 

2.5 and evaluated in Section 4. 

The reliability of future groundwater and imported water from the Portsmouth region are 

not projected to be significantly impacted upon by the regions climate change projections so their 

current MDO values are taken as consistent daily inputs to supply over the full planning horizon 

(Southern Water 2009).       

Demand Scenarios  

Demand Scenarios for the Sussex North region have been produced using data from Southern 

Waters WRMP 2010-35 (Southern Water 2009), which includes data to 2035 that is then 

extrapolated to 2060 using the same rate of change increases as those within the 2030-2035 data. 

They consist of 4 scenarios based on varying success levels following the enforced introduction 

of Universal Metering in the region (see Table 3). This requires full metering of all properties 

and non-household businesses by 2015 and the scenarios illustrate the projected effect of this 

introduction from a pessimistic demand increase to more optimistic results and also include 



19 
 
 

scenarios of low leakage increases and high leakage increases following the implementation of 

the regional leakage program (Southern Water 2009).  

The annual demand projections (in 5 year intervals) given in Table 3 are interpolated to produce 

yearly average demands. The annual average demand is then multiplied by monthly factors to 

reflect the changing seasonal demand averages employed by Southern Water  (2009; 2014). 

These values are then used to create four 50 year daily time-step demand scenarios. 

Acceptable System Performance Level 

Each adaptation strategy that is tested in the simulation model over a given future scenario 

combination of supply and demand projections will result in a specific risk of a water deficit 

value [Eq. (1)]. For the SNWRZ this risk level (as described in section 2.2) is calculated once all 

supply sources have been maximised, with the system entering a ‘water deficit’ when the last 

source, Weir Wood reservoir reaches a threshold level of 1155Ml (Southern Water 2009). The 

likelihood and magnitude of occurrences [calculated as a single risk metric, Eq. (1)] must not 

exceed a target level of system performance (𝑟𝑐). This target level of system performance has 

been determined by calculating the risk of a water deficit occurring over the previous 50 years of 

historic data. As the system has been deemed acceptable by customers over this period (Southern 

Water 2009), maintaining the system at its current level of historic risk is considered as 

acceptable system performance. The existing system, when tested in the simulation model with 

historic flows/in-flows, recorded 20 days of water deficits over the 50 year period (18263 days) 

and registered a total combined water deficit of 388Ml. Applying Eq. (1), this resulted in the 

target level of system risk (𝑟𝑐) of 0.425. 
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Decision Making Methods Application 

The following final parameters were selected for the RO NSGAII algorithm following testing of 

numerous combinations for optimal optimisation: population size (200); no. of generations: 

(500); selection bit tournament size (2); mutation probability (per gene – 0.2); crossover 

probability (single point – 0.7). Adaptation strategy generation, testing, ranking, mutation and 

ultimate Pareto strategy identification is an automatic process carried out by the NSGAII 

algorithm during the RO procedure after 500 generation assessments. 

For IG, multiple adaptation strategies are manually pre-specified from the range of 

potential option combinations and evaluated using the IG robustness model created. Either a 

subset of preferred strategies can be selected by the user or several thousand strategy 

combinations generated either using complete enumeration (generate all possible combinations) 

or using random generation (generate a specified number of combinations at random). The latter 

was carried out for this analysis using a random generation tool created in Python (as complete 

enumeration yielded too many combinations for feasible computation testing). The scenario 

generation tool created 28,000 individual adaptation strategies (of different intervention option 

combinations and varying sequencing of the options across the time horizon). Each strategy is 

then evaluated using the IG robustness model. The resulting strategy robustness vs cost results 

are then ranked to identify a set of IG Pareto strategies. This is a non-traditional step in the IG 

process; however it allows for easier comparing of the two DMM results. 

4   Results and Discussion 

For each DMM the 72 supply and 4 demand scenarios (i.e. a total of 288 possible scenarios) 

were modelled with the adaptation strategies, leading to the identification of Pareto optimal sets 
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for both decision making methods (RO and IG-Umid), trading-off the robustness of water supply 

and the NPV of total cost (see Fig. 5). 

As it can be seen from Fig. 5, when compared to RO, the IG method produces higher-cost Pareto 

strategies for all robustness levels. The distribution of Pareto strategies across the range of 

robustness is also lower for the IG analysis, with no Pareto strategies recorded between 20-60% 

robustness levels. The reason for both occurrences is due to the IG’s local robustness analysis 

and the method of ordering the scenarios. Examining the uncertainty region from a local point 

outwards requires multiple-adjacent scenarios to be satisfied in order for the robustness search to 

continue. This leads to more stringent localised target risk requirements than those placed on 

global robustness. As the analysis expands outward in an area calculation of satisficing 

scenarios, occasionally imperfectly ordered scenarios can lead to isolated regions of much higher 

requirements, which can pre-maturely end the robustness analysis. The reason for this is that 

several scenarios beyond these regions may have been satisfied by a strategy had they been 

reached. Fig. 6 depicts a simplified example of this ‘blocking’ effect using two example 

scenarios.  

The scenario profiles illustrate the changing water deficit levels projected on the current water 

system over time. Scenario 2 is calculated as having the higher risk of water deficit value (Rd), so 

is ranked and ordered as more severe than scenario 1. When example strategy A is tested over 

scenario 1, system performance is classed unsatisfactory since scenario 1’s greatest deficit period 

occurs early in the planning horizon and is not being met by strategy A’s adaptation strategy. 

However, it would have satisfied scenario 2, but this scenario is not examined as the IG 

assessment is stopped following failure to satisfy Scenario 1. Consequently IG theory would 

favour strategy B as it provides sufficient additional water to the system to satisfy both scenarios, 
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but has a trade off as being the more expensive strategy. RO’s global assessment incorporates 

each successful scenario (e.g. Scenario 2 for Strategy A) in the robustness calculation regardless 

of severity ordering and so can more easily satisfy target robustness levels. 

 Fig. 6 highlights the difficulty in ordering discrete scenarios into a range of severity, 

when the individual scenarios are so variable and complex in their constituent parts (i.e. 

including 50 year river flow sequences). This presents a potential weakness of utilising an 

ensemble of discrete projections for scenario generation with the IG method. Matrosov et al. 

(2013) tackled this issue by using continuous variables of monthly perturbation factors that 

diverged out from their median flow factor set at structured intervals whereas. Hall et al. (2012b) 

adopted an ellipsoid uncertainty model combined with an interval-bounded model to uniformly 

scale the uncertainty. These approaches were not applied in this case study as the purpose was to 

test the applicability of using Future Flow scenarios (Prudhomme et al. 2012). 

The IG results (Fig. 5) also indicate that a strategy of do nothing (spending 0 million) 

produces a 0% robust system and a sharp increase (spending over 60 million) is required to gain 

just a 2% robust system. This is due to the IG analysis using the median severity scenarios of 

supply and demand as a starting point, placing numerous hard to satisfy scenarios in direct 

proximity to the starting location. However, it could be argued that a solution of low robustness 

is not desirable so only the solutions of higher robustness (i.e. the IG results >60% robustness on 

Fig. 5) are significant to the final decision maker. 

Fig. 7 presents the breakdown of intervention options within all the Pareto strategies 

ranked above 60% robustness for both RO and IG methods. It shows the percentage of Pareto 

strategies that feature each option (a), including graphs showing the year of construction of each 

option as a percentage of occurrences (b). 
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It highlights several interventions as being the most cost effective options following their 

inclusion in all the Pareto strategies (e.g. option H – a new river Arun abstraction point including 

a small scale storage reservoir; and option I – a new pipeline for transfer of excess winter water 

to refill Weir Wood reservoir). The main difference between the IG and RO Pareto strategies is 

IG’s regularly selection of a large new reservoir (option A) to be constructed early in the 

planning horizon (2015) to increase overall system robustness (explained previously via Fig. 6.) 

whereas RO repeatedly selects option B (an effluent re-use scheme) early in the planning horizon 

(providing less water than option A but for less initial cost earlier in the planning horizon) before 

additionally adding options G and/or F (Aquifer storage and a new abstraction point on the river 

Adur) later in the planning horizon to increase water supply as more frequent deficit periods are 

projected over time. 

The adaptation strategy’s generation process, using samples rather than full enumeration 

for IG, did not contribute to a difference in the Pareto strategies identified as significantly as 

expected, although RO was able to identify several strategies that were not among the pre-

specified set used in the IG analysis. The low impact of the strategy generation process is likely 

due to this case study’s relatively small pool of intervention options examined and using a 

planning horizon segmented into 10 year construction periods. It is expected that a more 

complex case study with a larger pool of potential options will lead to more variation in the final 

Pareto strategies identified – this is an aspect for further investigation.  

Fig. 8 presents the Pareto strategies selected by the IG robustness analysis following 

variation of the initial starting point of the robustness analysis (Umid, Uhigh and Ulow in the scenario 

severity index). It reveals that the variation of start point did not alter the final Pareto strategies 

identified significantly, as can be seen by the largely overlapping IG Pareto fronts. The main 
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variation can be seen in the strategies identified below 50% robustness, where lower costing 

strategies are more readily identified by Ulow. This is because the larger robustness areas will 

encompass all the starting points regardless of their location within the region of uncertainty; 

however strategies of lower robustness will be identified at a more cost effective rate from a 

lower severity start point. This also implies that the starting point becomes more impacting the 

larger the uncertainty region becomes. 

Southern Water’s current water resource adaptation plan for the Sussex North WRZ (Southern 

Water 2009; 2014) includes option H (a new river Arun abstraction point including a small scale 

storage reservoir) which has been constructed and is now in use as of 2015, as well as plans for 

Options I (new pipeline to refill Weir Wood reservoir), G (aquifer storage) and B (the effluent 

re-use scheme) scheduled for 2018, 2020 and 2026 respectively. These options were also 

frequently selected within the DMM Pareto strategies however the overall plans differ, as both 

IG and RO produced Pareto strategies recommending more water to be added to the system 

earlier in the planning horizon to ensure higher levels of overall system robustness. Although this 

may seem an obvious statement qualitatively the DMMs provide quantitative information as to 

how much more water and where and when it needs to be added to the existing system to achieve 

a specific level of robustness. The larger initial resource options recommended also highlight the 

effect of examining multiple scenarios rather than planning to a single projection of supply and 

demand. The current UK industry planning methods assume a linear scaling of climate change 

between present day and the end of the planning horizon (Environment Agency et al. 2012) that 

ignores the variability from droughts, which these methods explicitly capture in this study. 

Therefore, by varying climate change and droughts you naturally plan for a wider range of 

robustness. It could also be argued that current methods do not evaluate for robustness given they 
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typically only use central deterministic scenarios. The 5 year cycle of water company WRMPs 

also means that large investments are typically deferred whilst low impact, low costs measures 

are implemented, as it is very hard to get large infrastructure development past the regulators. 

The more substantial resources recommended early in the planning horizon by both DMMs 

highlight these potential issues in current practice. The results could also be linked with the 

longer planning horizon considered in this assessment, whereby higher initial costs are traded for 

greater long term system robustness – an aspect for further investigation. The selection of the 

most suitable risk-based (or resilience-based (DEFRA 2013)) metric as well as an appropriate 

selection of target system performance, are also likely to heavily influence the final Pareto 

strategies obtained. 

Computational aspects of the methods (complexity and time) have not been examined in 

detail in this study as the computational setup is considered very specific to this case study. 

Further case study assessments would better reveal the computation strengths and weaknesses of 

each method.    

5   Conclusions 

This paper provides a comparison of two DMMs for integrated water resource management 

under deep uncertainty. The Robust Optimisation and Info-Gap methods were applied and 

compared on the case study of Sussex North Water Resource Zone in the UK with the aim to 

solve a specific WRM problem driven by the maximization of robustness of long-term water 

supply and minimisation of associated costs of adaptation strategies, all under a range of 

uncertain future supply/demand scenarios. The results obtained lead to the following key 

conclusions: 
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1. The two DMMs analysed produced different Pareto adaptation strategy recommendations 

to each other and to the strategies derived using the current UK engineering practice.  

2. Robust Optimisation generally produced lower costing Pareto strategies than IG for all 

ranges of desired system robustness due to RO’s less stringent method of global analysis. 

3. Info-Gap’s local analysis proved problematic to construct and assess using discrete 

scenarios and likely contributed to the higher costing strategy recommendations. 

4. Optimisation, although not applied to the IG methodology here is likely to be required at 

some stage of planning when dealing with larger data sets and a larger pool of potential 

intervention options. 

5. The location of the starting points of the IG analysis did not significantly alter the Pareto 

strategy results obtained, especially at higher robustness levels. However this could be 

associated to case study complexity and should be examined on more complex case 

studies to further explore this pivotal aspect of the theory 

6. The variation in the Pareto strategies derived highlight how the current industry standard 

for water supply system adaptation planning could benefit by applying a wider range of 

decision methodologies and assessment tools (especially those that quantify a level of 

system ‘robustness’) as well as a more encompassing investigation into potential future 

uncertainties and alternative methods for scenario generation. 

It is recommended that further analysis of IG and RO methods be undertaken on more complex 

case studies, utilising a larger pool of intervention options and a greater number of scenario 

projections, as well as consideration of additional planning objectives and uncertainties, before 

above conclusions could be generalised, including computational conclusions on the DMMs. 

Additionally the metrics of system risk are likely to influence the evaluation of adaptation 
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strategies and the comparison between DMMs. Further work should be considered to assess the 

impact of re-defining risk and target system performance in terms such as reliability, resilience 

and vulnerability (Hashimoto et al. 1982; Yazdani et al. 2011); leading to the potential 

development of a novel DM framework for complex WRM planning under uncertainty, that may 

utilise (perhaps hybridize) features from a range of DMMs with the aim to exploit advantages 

and minimise disadvantages of existing methods (e.g. using optimisation to select and test more 

strategy combinations, combined with new vulnerability map or scenario discovery 

methodologies (e.g. Singh et al. 2014) with objectives set up to examine the trade-offs between 

robust and flexible solutions across multiple-objectives). The flexibility of solutions is another 

aspect not explored within the approaches presented here. In practice evaluating only fixed rather 

than adaptable strategies limits the range of potential long-term trade-offs explored. This 

limitation can be overcome by combining these DMMs with modern approaches such as Real 

Options (Jeuland and Whittington 2014), Adaptive Pathways (Kwakkel et al. 2014) or Adaptive 

Multi-Objective Optimal Sequencing (Beh et al. 2015b).   
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Tables 

Table 1. SNWRZ existing water resources 

Resource 

Abstraction 

Priority 

Resource Description Minimum Deployable 

Output (MDO) In 

Ml/d 

Projected by Southern 

Water to be Affected by 

Climate Change? 

1 River Rother/Arun Abstraction 40
a
 Significantly 

2 Groundwater Sources 11.05
b
 Not significantly 

3 Portsmouth Water Import 15
b
 Not significantly 

4 Reserve Groundwater at Hardham 36.96 Not significantly 

5 Weir Wood Reservoir Storage 21.82 Significantly 
a
Dependent on minimum residual flows in the river Rother (MRFs) 

b
Set at a constant value 

Table 2. New water resource supply options available for the SNWRZ 

Option Resource Option Description Minimum 

Deployable 

Output (Ml/d) 

Estimated 

Capital 

Costs (£M) 

(2015) 

Estimated 

Annual 

Operational 

Costs (£M/yr) 

(2015) 

A Surface storage reservoir with combined river 

Rother/Arun feed 

26 47.8 0.21 

B Effluent re-use Scheme- MBR at Ford WWTW 19 36.7 0.16 

C Tidal river Arun desalination plant- 20Ml/d 20 34.6 0.34 

D Tidal river Arun desalination plant - 10Ml/d 10 24 0.27 

E Hardham WTW winter transfer to coast 4 17.1 0.12 

F River Adur abstraction point 5 11.2 0.07 

G Aquifer storage on the Sussex coast 5 10.8 0.06 

H River Arun abstraction point (below tidal limit) 

and small storage reservoir 

11.5 10.2 0.07 

I Winter Refill of Weir Wood Reservoir 3 3.2 0.02 

Table 3. Demand scenarios for the SNWRZ (Ml/d) 

 

Scenario Name 

Year Beginning – Average Daily Demand
a
 (in Ml/d) 

2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 

UM (pessimistic) 69.7 69.6 69.8 70.4 71.0 71.6 72.3 73.2 74.1 75.2 

UM (optimistic) 67.2 67.5 68.2 69.2 70.1 70.9 71.8 72.5 73.2 73.8 

UM (low leakage) 67.1 67.3 67.9 68.7 69.4 70.2 70.7 71.3 71.7 71.9 

UM (high leakage) 68.7 69.0 69.5 70.1 70.9 71.6 72.6 73.7 75.1 76.7 
a
Demand values are the Dry Year Annual Average (DYAA) levels which are then fluctuated monthly throughout 

each year based on seasonal demand ratios (Southern Water 2009) 
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Figures 

Fig. 1. Info-Gap robustness and opportuneness models 

Fig. 2. Info-Gap robustness model – utilising discrete scenario area-based robustness mapping to 

search the uncertainty region 
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Fig. 3. Example of two adaptation strategies tested using the Info-Gap area-based robustness 

model  
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Fig. 4. Southern Water: Sussex North Water Resource Zone (SNWRZ) and surrounding 

territories – including network schematic. Map from Southern Water’s annual report and 

accounts 2014-15 (Southern Water 2015) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iping Mill 

River abstraction point  

Groundwater source  

Reservoir 

Water treatment works  

Water import  

Future Flow gauging site  

Water supply and 
wastewater treatment areas  

Wastewater treatment 
areas only 

Water supply only areas 

Reservoirs 



42 
 
 

Fig. 5. Pareto sets identified by the Info-Gap and Robust Optimisation methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Example of a scenario ordering arrangement that would prematurely end an Info-Gap 

robustness search. Explained via two scenario water deficit profiles and the respective water 

added to the system by two adaptation strategies. Strategy A has not satisfied scenario 1 but 

would have satisfied scenario 2 
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Fig. 7. (a) Individual intervention option components that feature in the Pareto strategies ranked 

above 60% robustness for Info-Gap and Robust Optimisation methods as a percentage of 

occurrences, and their year of implementation (b) also as a percentage of occurrences 

 

(a)                                                                                                 (b) 

Fig. 8. Pareto strategies identified by Info-Gap following variation of the initial start point of the 

analysis (denoted as Ulow, Umid and Uhigh)  
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