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Abstract 10 

Resilience of a water resource system in terms of water supply meeting future demand under 11 

climate change and other uncertainties is a prominent issue worldwide. This paper presents an 12 

alternative methodology to the conventional engineering practice in the UK for identifying long-13 

term adaptation planning strategies in the context of resilience. More specifically, a resilience-14 

based multi-objective optimization method is proposed that identifies Pareto optimal future 15 

adaptation strategies by maximizing a water supply system’s resilience (calculated as the 16 

maximum recorded duration of a water deficit period over a given planning horizon) and 17 

minimizing total associated costs, subject to meeting target system robustness to uncertain 18 

projections (scenarios) of future supply and demand. The method is applied to a real-world case 19 

study for Bristol Water’s water resource zone and the results are compared with those derived 20 

using a more conventional engineering practice in the UK, utilizing a least-cost optimization 21 

analysis constrained to a target reliability level. The results obtained reveal that the strategy 22 

solution derived using the current practice methodology produce a less resilient system than the 23 

similar costing solutions identified using the proposed resilience driven methodology. At the 24 
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same time, resilience driven strategies are only slightly less reliable suggesting that trade-off 25 

exists between the two. Further examination of intervention strategies selected shows that the 26 

conventional methodology encourages implementation of more lower cost intervention options 27 

early in the planning horizon (to achieve higher system reliability) whereas the resilience-based 28 

methodology encourages more uniform intervention options sequenced over the planning 29 

horizon (to achieve higher system resilience).  30 
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1      Introduction 34 

One of the greatest challenges facing decision makers in the water industry in the UK and 35 

worldwide are the increasing influences of “deep” climate change, population growth and 36 

urbanization uncertainties affecting the long-term balance of supply and demand and 37 

necessitating the need for adaptive action (Environment Agency 2013). Walker et al. (2013) 38 

defines the circumstances at which uncertainties can be classified as  “deep” as when “one is 39 

able to enumerate multiple plausible alternatives without being able to rank the alternatives in 40 

terms of perceived likelihood”. Under this definition, which is utilized in this paper, 41 

uncertainties are often categorized by the generation of multiple future scenarios to represent a 42 

range of “alternative plausible conditions under different assumptions” (Mahmoud et al. 2009). 43 

Combining these scenarios with a suitable metric to measure system sensitivity to changing 44 

conditions (i.e., robustness) can then facilitate the examination of the potential benefits of 45 

alternative system configurations (i.e., adaptation strategies) across a range of deep 46 

uncertainties. The interaction of deep uncertainty, scenarios, robustness and adaptation is 47 

discussed in detail by Maier et al. (2016). 48 



The complexity of these interactions brings into question the ability of current UK and 49 

international engineering planning approaches to deal with deep uncertainties. For example, the 50 

current water supply planning approach in the UK is to ensure a regional water system maintains 51 

a designated ‘level of service’ to its customers (NERA 2002; Environment Agency et al. 2012). 52 

This is essentially an agreement between a water company and its customers describing the 53 

average frequency that a company will implement temporary restrictions on water use. However, 54 

this ‘level of service’ calculation lacks transparency and is often presented as a general target 55 

(e.g., a target system performance of no more than 1 in 10 or 1 in 15 years enforced restrictions 56 

(Bristol Water 2014)). It is also calculated irrespective of the duration of each projected 57 

restriction. Further to this it relies on an assumption that a drought event can be assigned a 58 

probability of occurrence and associated return period despite the long acknowledged the 59 

liabilities of event frequency estimation techniques (Turner et al. 2014). Especially in light of 60 

increasing climate change effects where the impacts on hydrology are likely to be non-linear and 61 

felt most at the extremes (Allen and Ingram 2002). 62 

In response to the rising uncertainties a range of experimental frameworks and 63 

approaches are currently being developed and tested for potential use in the water industry. 64 

Recent international water resources management (WRM) literature includes a wide array of 65 

contrasting approaches for planning under “deep” uncertainty, such as: Robust Decision Making 66 

(Matrosov et al. 2013; Groves et al. 2015), Info-Gap decision theory (Korteling et al. 2013; 67 

Roach et al. 2016), Decision Scaling (Brown et al. 2012; Turner et al. 2014) and Robust 68 

Optimization (Ray et al. 2013; Kwakkel et al. 2015). Most of these approaches have been 69 

developed to evaluate the performance of a decision or strategy by calculating system 70 

robustness, which is the term commonly used to describe the degree, or percentage of plausible 71 

future conditions, under which a water supply system maintains a satisfactory level of 72 

performance. Alternative approaches incorporating flexibility analysis within the adaptive 73 

planning process are also being examined for WRM application, such as the use of Dynamic 74 



Adaptive Policy Pathways (Kwakkel et al. 2015). However, despite the widening range of 75 

approaches under development, the outputs from these methods remain highly dependent on 76 

how the water resource system performance itself is evaluated. It is within these more practical 77 

engineering features that a wider knowledge gap is often over looked. 78 

The more well-known performance criteria often cited within WRM literature are those 79 

of Hashimoto et al. (1982) who were among the first to purpose the use of the terms reliability, 80 

vulnerability and resilience for water resource system performance evaluation. These 81 

performance criteria, in general, refer to how likely a system is to fail (its reliability), how severe 82 

the consequences of failure might be (its vulnerability) and how quickly it can bounce back, 83 

which is the recovery from a failure (its resilience). The EBSD ‘levels of service’ method used 84 

in current UK engineering practice can be most closely equated to a performance criterion of 85 

reliability and does not explicitly consider the resilience of the system. However, the latest 86 

investigation by the EA into WRM planning methods of the future (Environment Agency 2013), 87 

called for a review of the EBSD ‘levels of service’ method and for the advancement of 88 

incorporating more resilience into water resource system planning, indicating it will support 89 

adaptation strategies that are aimed at improving system resilience. Recent UK government 90 

reports have also emphasized resilience (Defra 2016); however, there is still no standard 91 

quantitative definition of resilience (Environment Agency 2013) and resilience remains 92 

generally poorly defined in practice to date. 93 

The application of resilience as a criterion for measuring performance in WRM problems 94 

has been explored (Jung 2013; Linkov et al. 2014). Matrosov et al. (2012) and Paton et al. 95 

(2014) calculated resilience as the average duration of time a system is under a temporary 96 

restriction. Fowler et al. (2003) calculated it as a fraction of the total future time a system is 97 

under an unsatisfactory state. Loucks (1997) calculated it as the probability of a system 98 

recovering once it enters an unsatisfactory state. Kjeldsen and Rosbjerg (2004) calculated 99 

resilience in three alternative ways: the inverse of the mean value of the time the system spends 100 



in an unsatisfactory state, the maximum duration of an unsatisfactory state and the duration of 101 

the 90th fractile of observed unsatisfactory periods. They concluded that the maximum duration 102 

metric provided the most accurate and comprehensible estimation of performance. A direct 103 

maximum duration calculation was also the resilience metric of choice by Moy et al. (1986) who 104 

selected it to enable and simplify the quantification of resilience and its incorporation into a 105 

mathematical programming model. Kundzewicz and Kindler (1995) argued that a resilience 106 

definition based on a maximum value is more useful than one based on a mean, as the presence 107 

of small inconsequential events can lower the mean value and present an inaccurate picture of 108 

actual overall system performance. Using resilience as a performance criterion has also been 109 

investigated within several other areas of human, social and ecological systems science, from 110 

natural resource investigations (Tompkins and Adger 2004) to coral reef surveys (Hughes et al. 111 

2003), with a detailed review of cross sector resilience measures conducted by Hosseini et al. 112 

(2016). It has generally been concluded that building resilience into systems (i.e. the ability to 113 

recover quickly from detrimental periods) can be an active and effective way to cope with 114 

environmental change characterized by future uncertainties and unknowable risks. 115 

Despite several investigations involving resilience criteria (see above), few to date have 116 

applied the metric to a complex real-world WRM adaptation case study under deep uncertainty 117 

to identify optimal adaptation strategies from a wide range of potential supply and demand 118 

intervention options. Nor has a comparative analysis been conducted with results from current 119 

engineering practice. The novelty of this study lies in the assessment of whether incorporating a 120 

duration-based metric of resilience as a quantified objective in WRM assessments, in addition to 121 

appraisals of scenario-based robustness and total costs, can improve the derivation of optimal 122 

adaptation strategies, when compared with the standard UK practice of performing a single 123 

least-cost linear optimization analysis constrained to a single reliability metric. To accomplish 124 

this, a novel resilience-based top-down multi-objective optimization method for the selection of 125 

optimal water resources adaptation strategies has been developed, validated and demonstrated. 126 



The general WRM problem addressed is first defined followed by the definitions and 127 

concepts of resilience, reliability, robustness, adaptation strategies and costs. A description of 128 

the resilience-based methodology and the water resources simulation model developed for this 129 

study are then given. The quantitative case study of Bristol Water (BW) is then presented, 130 

followed by results and discussion. 131 

2    Methodology 132 

2.1    WRM problem definition 133 

The WRM problem is defined here as the regional long-term water resources planning problem 134 

of maintaining adequate water supply to meet future demand over a pre-specified planning 135 

horizon under uncertain future conditions of climate change and population growth. The aim is 136 

to determine the best adaptation strategy(ies) (i.e., set of intervention options scheduled across a 137 

given planning horizon) that can upgrade an existing WRM system to maximize the resilience of 138 

the future regional water supply whilst minimizing the total cost of intervention options required 139 

subject to target levels of desired robustness. Note here that resilience is a primary planning 140 

objective being optimized for within the methodology, while target robustness is set as a 141 

changeable constraint. 142 

2.2   Resilience of water system 143 

In this study, resilience is defined and calculated as the maximum recorded duration of time 144 

taken for the water supply system to enter, and then recover from a water deficit period. A water 145 

deficit period is defined as a consecutive time-period where a temporary water restriction must 146 

be put in place (e.g., a temporary water use ban). Extended water restrictions have potentially 147 

severe economic, environmental, societal and reputational impacts, particularly in large 148 

conurbation areas (Environment Agency 2015). 149 



The conditions that elicit a water deficit period to occur are highly dependent on the 150 

water system under study. In the case study analysed in this paper (see section 3) a water deficit 151 

period is registered when the water level in the primary combined network reservoir system falls 152 

below an unacceptable pre-specified (threshold) level. The rationale behind this is that a water 153 

deficit period defined this way may be allowed to occur occasionally, to manage the water 154 

supply system during periods of drought, but an empty reservoir causing an unfulfilled water 155 

demand is deemed unacceptable. The threshold which defines a water deficit (the vulnerability 156 

of the system (Hashimoto et al. 1982)) is pre-specified by setting the water deficit threshold 157 

level to an appropriate magnitude. However, the frequency of deficit periods (the reliability of 158 

the system) is left unconstrained in this methodology to examine the effect of driving strategy 159 

optimization by resilience alone. 160 

For comparison with the resilience-based methodology a ‘current practice’ methodology 161 

is also tested, which represents conventional water company practice of using ‘levels of service’. 162 

This defines the target frequency that customer water restrictions would be implemented. Rather 163 

than using a resilience metric this approach involves setting a target reliability for the system 164 

(here taken as a maximum allowable frequency of water deficit periods recorded over a planning 165 

horizon) and then optimizing with the same definition of system robustness, calculation of total 166 

strategy costs and utilizing the dynamic water resources simulation model as outlined below.   167 

2.3   Robustness of water supply 168 

Robustness is most commonly described in water resources literature as the degree to which a 169 

water supply system can maintain performance at a satisfactory level across a broad range of 170 

plausible future scenarios or conditions (Moody and Brown 2013; Matrosov et al. 2013). A 171 

global robustness measure of satisficing performance utilizing pre-defined domain criterions has 172 

been selected for this study, as it elicits a transparent quantified calculation of robustness that is 173 

suitable when examining a wide range of highly variable discrete future scenarios and has been 174 

successfully employed in numerous recent WRM studies (Paton et al. 2014; Beh et al. 2015; 175 



Roach et al. 2016). Robustness of long-term water supply is specifically defined here as in 176 

Roach et al. (2016) as the fraction (i.e., percentage) of future supply and demand scenarios that 177 

result in an acceptable system performance (here in terms of resilience), as shown in Eq. (3). For 178 

example, if 90 out of 100 scenarios maintain a given resilience (e.g., maximum duration of water 179 

deficit equal to 1 month) then the robustness, of the water supply to maintain this level of 180 

resilience is 0.9, i.e., 90%.  181 

2.4   Adaptation strategies and water resources simulation model 182 

A range of different adaptation strategies can be generated by employing different combinations 183 

of new water resources and/or techniques to reduce water losses/consumption (intervention 184 

options) sequenced over a given long-term planning horizon (see examples in Table 2). The total 185 

cost of an adaptation strategy is expressed in terms of Present Value (PV), as shown in Eq. (2). 186 

Different adaptation strategies are evaluated using a dynamic water resources network model 187 

(see Fig. 1) that is designed to simulate the supply and demand balance of a regional water 188 

supply system/network, using a monthly time step, over a pre-established time horizon. 189 

Different adaptation strategies and future scenarios of supply and demand can be input to the 190 

system, analysing the performance of each system combination via system resilience results. 191 

The dynamic water resources simulation model is written in the Python programming language 192 

(Python Software Foundation 2013), and scenarios and strategies are selected and input 193 

automatically using an optimization algorithm routine constructed in the R programming 194 

language (R Core Team 2013). 195 

[Insert Fig.1 here] 196 

2.5    Optimization methodology 197 

A resilience-based two-objective optimization method is presented that identifies Pareto optimal 198 

solutions by maximizing system resilience to water deficits and minimizing the total cost of 199 

interventions subject to target levels of robustness, i.e., as follows. The resilience of an 200 



adaptation strategy x to a discrete individual scenario combination of supply and demand u is 201 

calculated as: 202 

max   (1) 

where p(j) is the duration of the jth water deficit period. The total cost of adaptation strategy x is 203 

expressed in terms of Present Value (PV) using a standard discounting equation applied to both 204 

the estimated capital costs Cy (£M) and operational costs Oy (£M/yr) of each selected 205 

intervention option y, as follows: 206 

1 1
 

 
(2) 

where r = the annual discount rate, i = the time step of the planning horizon (in years), iy = the 207 

year in the planning horizon option y is implemented, Y = the total number of intervention 208 

options in the (adaptation) strategy, and I = the total number of years in the planning horizon. 209 

The robustness of long-term water supply is then derived as follows: 210 

	 ∗ 100 
 

(3) 

where A = the number of scenario combinations (of supply and demand) under which the system 211 

maintains a given level of resilience and U = total number of scenario combinations considered. 212 

Every time an adaptation strategy is evaluated during the optimization process all potential 213 

combinations of supply and demand are generated and assessed using full enumeration sampling 214 

of all potential scenarios. This ensures all viable futures are explored in the robustness 215 

calculation.  216 

A discrete target level of robustness R is selected and set as a constraint in the 217 

optimization process and the highest level of resilience that can be maintained by a system at or 218 

above this target robustness level is recorded. For example, if target robustness is set at 80% and 219 

the highest level of resilience maintained by a given adaptation strategy system is 5 months, then 220 

the systems resilience is designated as 5 months. Note that if multiple optimization problems 221 



(for varying target levels of robustness) are solved this will enable the production of a 3D trade-222 

off surface between resilience, cost and robustness. 223 

The optimizing algorithm selected for this study is the NSGA-II (Deb and Pratap 2002), 224 

as its high performance and capabilities in handling multi-objective water related optimization 225 

problems is well documented (Nicklow et al. 2010; Zheng et al. 2016) and it is recognized as an 226 

industry standard and freely available algorithm (Wang et al. 2014). Alternative evolutionary 227 

algorithms, such as BORG or epsilon-NSGA2, have proven superior in certain criteria in recent 228 

studies (Reed et al. 2013; Zheng et al. 2016). However, the NSGA-II is still a reliable MOEA 229 

and proved suitably adequate to handle the complexity of this study following extensive test 230 

runs.  231 

The selected NSGA-II uses integer values to select from the decision variables (options) 232 

and is modified to run using multi-processor parallel programming to increase run time 233 

efficiency. The dynamic, monthly-time step water resources simulation model and resilience-234 

based methodology set-up is combined with the NSGA-II algorithm (see Fig. 1). The model then 235 

requires three data field inputs; a pool of plausible potential new intervention options being 236 

considered by a water company (see section 3.3) to form new adaptation strategy combinations, 237 

and a credible range of potential supply and demand scenarios for a region (see section 3.2). The 238 

selected NSGA-II parameters used in the case study optimization runs are fully listed in section 239 

3.6 and further explanation of the NSGA-II operation can be found in Deb and Pratap (2002). 240 

3      Case study 241 

3.1    Description 242 

The methodology detailed in section 2 is applied to a case study of the Bristol Water (BW) water 243 

resource zone. Bristol Water manage a region in the south-west of the UK (see Fig. 2) supplying 244 

approx. 1.2 million customers (as of 2015)The current water supply/demand balance (i.e. as of 245 

2015) is fine but this region is expected to experience increasing pressures on local water 246 



resources from rising populations (with a 15% projected increase in demand by 2045) and 247 

reductions in the availability of existing water resources as a consequence of climate change 248 

leading to a supply-demand deficit by the 2030s (Bristol Water 2014). This imbalance is 249 

anticipated to continue and worsen through to the end of the 21st century (HR Wallingford, 250 

2015). The existing primary water resources are shown in Fig. 2 and listed in Table 1.  251 

Table 1. The existing water resources of the BW resource zone (Bristol Water 2014) 252 

Resource 
abstraction 

priority 
Resource description 

Deployable outputa (DO) 
annual average - in ML/d 

Projected by Bristol Water 
to be affected by climate 

change? 
1 Sharpness canal 210 Not significantly 

2 Groundwater sources 65 Not significantly 

3 Mendip reservoirs 91 Significantly 
aDO is the yield of the source subject to additional system constraints such as the abstraction license, infrastructure 253 
capacity and environmental requirements. 254 

[Insert Fig.2 here] 255 

The BW water resource zone, introduced in Roach et al. (2015), is designed to operate as a 256 

single resource zone across the whole company area. Under this set-up, no part of the BW 257 

resource zone is remaining solely dependent upon the consistent yield of a single water resource. 258 

The main river and groundwater sources (resources 1 and 2 in Table 1) are designated reliable 259 

and sustainable over the next planning period (2015-2039); whereas the resource available from 260 

the Mendip Reservoirs is anticipated to be impacted by climate change. For the Mendip 261 

Reservoirs there are three main input components to the combined reservoir system to be 262 

modelled when projecting climate scenarios. These are: the direct reservoir inflows to the 263 

Mendip reservoirs; the lake at Chew Magna and the river Axe at Cheddar (see Fig. 2 and section 264 

3.2). 265 

The aim of the real-life WRM problem analysed here is to determine the best adaptation 266 

strategy(ies) to upgrade/implement within the existing water resource system/network that will 267 

maximize the resilience of future regional water supply whilst minimizing the total cost of 268 



intervention options required subject to different target levels of robustness. The dynamic water 269 

resources simulation model (described in section 2.4) is developed for the BW resource zone to 270 

realistically simulate the monthly supply-demand balance of the system over a 25-year planning 271 

horizon (from year 2015 to year 2039 inclusive). A 25-year planning horizon is selected to 272 

imitate the time frame used in a typical UK water company WRMP planning horizon. 273 

3.2    Scenarios of supply and demand 274 

In this case study, two types of scenarios are generated, supply scenarios to model the impact of 275 

climate change on water available at sources and demand scenarios, to model the impact of 276 

future population growth and urbanization changes.   277 

The supply scenarios for the BW resource zone have been generated using the Future 278 

Flows climate/hydrology scenarios. These were used to generate future flow projections for the 279 

region’s major contributing rivers and reservoirs (Roach et al. 2015). The Future Flows project 280 

(Prudhomme et al. 2012) utilises the projections derived from the UKCP09 regional climate 281 

models (RCMs) from the Met Office Hadley Centre. They provide 11 plausible realisations (all 282 

assumed equally likely) of river flows at various river gauging stations across the UK 283 

accounting for the impact of climate change to 2100 under a Medium emission scenario. The 284 

key advantage of the Future Flow scenarios is that they are transient flow projections, so they do 285 

not require additional rainfall-runoff modelling and so can be directly utilized to continuously 286 

simulate the supply-demand balance over a given planning horizon and analyse the associated 287 

timing of interventions. The limitation of the current Future Flow projections is their utilization 288 

of only a medium global emission scenario; however, once resampled multiple times, the Future 289 

Flow projections provide an adequate range of uncertainty for this specific metric evaluation. 290 

Resampling of the flow projections (as outlined in Roach et al. (2016)) eliminates any bias in the 291 

selection of adaptation strategies due to the timing and duration of future drought conditions 292 

exhibited, and enables a sufficient investigation into the role of climate variability on the 293 

region’s resources.  294 



The 11 Future Flow projections from the nearest gauging site to the Mendip region 295 

(Midford Brook) are each imposed on 30 resampled flow sequences (derived for each of the 296 

three input components to the combined reservoir system detailed in section 3.1) to create 330 297 

discrete future supply scenarios. Using transient sequences of flows differs to the standard 298 

engineering practice (the EBSD method), which utilises a singular linear interpolation of future 299 

available supply projected from the baseline to the 2030s (Environment Agency et al. 2012).     300 

The demand scenarios for the BW resource zone have been generated using the Office 301 

for National Statistics (ONS) population projections (ONS 2014). These consist of 3 scenarios 302 

of Low, Principal and High population growth used to perturb historic demand values that are 303 

then calculated subject to 3 alternative levels of population/urbanization uncertainty; based on 304 

the 80%, 90% and 100% risk and uncertainty calculations (Bristol Water 2014). This forms 9 305 

discrete scenarios of demand, which combined with the 330 supply scenarios, creates 2,970 306 

potential future supply and demand scenario combinations to model. 307 

3.3    Adaptation strategies 308 

An investigation into potential new intervention options for the BW region was carried out in 309 

Roach et al. (2015) using the BW WRMP 2014 data surveys (Bristol Water 2014). This created 310 

a list (or pool) of 31 potential new small to large water supply resources and options to reduce 311 

water consumption or losses. From this list a range of different adaptation strategies can then be 312 

formed by implementing different combinations of the new options, sequenced over the 25-year 313 

strategic planning horizon (2015-2039) in varying arrangements. The total Present Value (PV) 314 

costs of strategies are then calculated using the approach shown in Eq. (2), with an assigned 315 

annual discount rate of 4.5%, as utilised by Bristol Water (2014). Table 2 shows the 19 316 

intervention options, out of the total 31, that feature in the final results (section 4). 317 

Table 2. List of intervention options available for the Bristol Water region (Bristol Water 2014; Roach et 318 
al. 2015) 319 

Option Intervention option Capital / Deployable 



code Operational cost 
(£M / £M/year) 

output 
(ML/d) 

  OPTIONS TO REDUCE WATER CONSUMPTION     
C1 Smart metering rollout 11.5/0.1 2.6 
C2 Compulsory metering of domestic customers 32.3/2.4 8.0 
C3 Selective metering of high users 6.0/0.3 3.2 
C4 Change of ownership metering  32.5/1.5 11.6 
C5 Business water use audits 0.0/0.3 1.0 

OPTIONS TO REDUCE WATER LOSSES     
D1 Pressure reduction 2.5/0.1 2.8 
D4 Communication and supply pipe replacement 3.5/0.0 2.2 
D5 Leakstop enhanced 1.8/0.0 0.2 
D6 Active leakage control increase 0.0/0.9 4.4 
D7 Zonally targeted infrastructure renewal 165.1/0.1 13.4 

OPTIONS TO PROVIDE ADDITIONAL WATER RESOURCES     
R3 Desalination plant and distribution scheme 179.4/1.9 30.0 
R4 Cheddar second reservoir 99.7/0.2 16.3 
R7 Upgrade of disused southern sources 8.3/0.3 2.4 

R11 Reduction of bulk transfer agreements 0.0/0.3 4.0 
R12 Bulk supply from: (Wessex Water Bridgewater) 26.4/2.3 10.0 
R14 Huntspill Axbridge transfer (traded licence) 10.2/0.2 3.0 
R15 Honeyhurst well pumped transfer to Cheddar 5.1/0.1 2.4 
R16 Gurney Slade well development 10.7/0.3 1.5 
R18 Chew Stoke Stream reservoir 54.8/0.1 8.0 

3.4   The resilience and robustness of the water system 320 

As detailed in section 2.2, the resilience of an adaptation strategy under a given discrete future 321 

scenario of supply and demand is calculated as the maximum recorded duration (in months) that 322 

the system remains in a water deficit period (Eq. (1)), due to the remaining water volume in the 323 

combined reservoir network falling below a threshold level. The threshold levels vary depending 324 

on the month in the year as specified in BW’s drought plan (Bristol Water 2012). As there are 325 

2,970 scenario combinations examined, this results in 2,970 resilience result for each adaptation 326 

strategy tested. A discrete target level of robustness is selected and the maximum resilience level 327 

maintained by each adaptation strategy at or above this selected target robustness is recorded; or 328 

alternatively for the ‘current practice’ methodology under which a target level of reliability is 329 

maintained. 330 

3.5   Current practice methodology application 331 

The target level of reliability for Bristol Water is currently set to maintain a 1 in 15 year 332 

maximum occurrence of temporary restrictions being put in place (Bristol Water 2014). Using 333 



reliability Eq. (4) the relative frequency/probability of a system not being in deficit is calculated 334 

(Kjeldsen and Rosbjerg 2004):  335 

	 1
∑

∗ 100 
 

(4) 

where jh = a value equal to 1 if a year contains a water deficit period, otherwise equal to 0; h = 336 

the year index and H = the total number of years in the planning horizon. For BW to meet its 337 

target ‘level of service’, this translates as maintaining approximately 93% reliability. Over the 338 

selected 25-year planning horizon this corresponds to a maximum allowable frequency of 2 339 

water deficit periods occurring over the planning horizon. This ‘level of service’ must also be 340 

maintained over a specified level of a system’s supply/demand balance uncertainty known as 341 

target headroom (Environment Agency et al. 2012).  342 

BW has selected to maintain a target headroom level of 90% over the next 25 year 343 

planning horizon to significantly reduce the risk of failing to maintain their agreed ‘level of 344 

service’ (Bristol Water 2014). The headroom percentage distributions are calculated either side 345 

of the median supply-demand balance forecasts and encompass the plausible range of 346 

uncertainty. It should be noted that BW’s headroom value is applied to an aggregate supply-347 

demand balance, not directly within a simulation model, and includes factors that are not 348 

considered in this study (e.g. risk of outage events of assets). However, these are typically 349 

smaller components and this study considers a wider range of uncertainty in the supply and 350 

demand scenarios which are directly simulated. Therefore, BW’s target headroom level, 351 

reflecting an attitude to risk, is used by selecting a 90% target robustness of the supply/demand 352 

scenarios considered in the resilience-based methodology. 353 

3.6   Application of optimization model 354 

The dynamic, monthly-time step water resources supply and demand simulation model linked to 355 

the NSGA-II optimization method (as described in sections 2.4 and 2.5) has been used here. The 356 



NSGA-II parameters (derived as optimal from the testing of numerous parameter combinations) 357 

are as follows: population size: 400; number of generations: 2000; selection bit tournament size: 358 

2; mutation probability (per gene): 0.2; crossover probability (single point): 0.7. 359 

The generation of adaptation strategies, subsequent testing, ranking, crossover/mutation 360 

and ultimate Pareto optimal strategy set identification is automatically carried out by the NSGA-361 

II algorithm during the optimization process after 2000 generation assessments. Ten separate 362 

runs (with different random seeds, i.e. randomly generated initial populations of solutions) are 363 

carried out to ensure that the true Pareto optimal strategies are being identified by the 364 

optimisation process. 365 

A range of target levels of robustness are selected and input to the optimization model as 366 

constraints to derive a Pareto set of results. The Pareto sets obtained from multiple optimization 367 

model runs are then combined to produce a 3D-surface of Pareto optimal solutions. The discrete 368 

target levels of robustness selected for the optimization analysis are 50, 60, 70, 80, 90 and 100%. 369 

A ‘current practice’ (CP) problem was also solved to derive a single optimal solution under the 370 

constraints listed in section 3.5.  371 

4      Results 372 

The optimal solution derived by the ‘current practice’ (CP) methodology is presented first, 373 

including calculations of the respective resilience exhibited by this strategy over varying target 374 

levels of robustness. The resilience-based methodology results are presented afterwards. 375 

Selected Pareto optimal adaptation strategies from the resilience driven optimization 376 

methodology are then compared with the CP derived solution and engineering aspects discussed. 377 

The CP methodology derives a single optimal adaptation strategy following low-cost 378 

optimization to a target reliability of ≥92% and target robustness of 90% (see section 3.5). The 379 

adaptation strategy derived has a PV of total cost of £199M and consists of several low-cost 380 

options to reduce water consumption and water losses and several water transfer schemes 381 

scheduled from 2015 to 2017, before construction of a large reservoir at Chew Stoke (option 382 



R18 in Table 2) in 2021. Only few options are scheduled for post 2021. The full strategy details 383 

are shown in Fig. 6. 384 

The strategy solution derived by the CP methodology is compared with the resilience 385 

driven optimization model by calculating the resilience of this strategy solution for the same 386 

target levels of robustness applied in the resilience-based methodology. Fig. 3 displays the 387 

maximum resilience maintained by the strategy under target levels of robustness of 50, 60, 70, 388 

80, 90 and 100% respectively. It shows that this ‘reliability’ driven strategy solution can 389 

maintain a resilience as high as 3 months for at least 80% of future supply and demand 390 

scenarios, but this resilience worsens to 10 and 22 months respectively for 90% and 100% 391 

robustness respectively. 392 

[Insert Fig.3 here] 393 

Pareto adaptation strategies were identified by the resilience driven methodology 394 

optimized by maximizing the system resilience and minimizing the PV of the total cost of 395 

adaptation strategies. Six separate optimization runs were conducted for the following target 396 

system robustness’s: 50, 60, 70, 80, 90 and 100%. Fig. 4 presents the 3D Pareto set derived from 397 

these optimizations runs as three 2D graphs displaying: (a) resilience vs cost for varying target 398 

levels of robustness, (b) robustness vs cost for varying levels of resilience and (c) resilience vs 399 

robustness for varying strategy cost groups, before being combined as a 3D-surface in Fig.5.  400 

[Insert Fig.4 here] 401 

[Insert Fig.5 here] 402 

The selection of a preferable adaptation strategy can be made from Fig. 4; however, the 403 

3D-surface provides a clearer overview of the various trade-off options and affords a decision 404 

maker more perspective about how best to satisfy the various performance criteria. An ideally 405 

located individual strategy can then be selected or a specific, more desirable, region of the 406 

surface selected for further examination of individual strategies. More specifically, the decision 407 



makers can select exactly how robust and resilient they want their system to be as well as being 408 

able to discern how moderate increases or decreases in expenditure will alter the performance of 409 

the water system. Optimization to individual target levels of performance, as is undertaken in 410 

current UK engineering practice using a cost only optimization (the EBSD approach (NERA 411 

2002)), does not allow these observations to be made. Typically, only singular optimal solutions 412 

are derived (equivalent to identifying a single point in Fig. 4(a-c)). 413 

The CP derived optimal strategy is compared with selected strategy solutions derived by 414 

the resilience-based methodology that exhibit similar levels of resilience / total costs in order to 415 

contrast and compare the solutions derived by each method. The strategies selected are shown 416 

on Fig. 5. They consist of: strategies R1-R6, which are selected as they exhibit the same 417 

resilience to target levels of robustness as the CP solution (i.e., from Fig. 3), and strategies A1-418 

A4 and B1-B3 as they offer increased resilience at a high level of robustness (90% for strategies 419 

A1-A4 and 80% for strategies B1-B3) for a similar PV of total cost as the CP solution. Table 3 420 

lists the PV of total cost of each strategy examined as well as the resilience and reliability 421 

exhibited, the respective levels of robustness and the average resilience and average reliability 422 

recorded across all future scenarios examined. 423 

Table 3. Cost, resilience, reliability and robustness exhibited by the selected strategies 424 

100% 90% 80% 70% 60% 50%

R1 165.1 80 64 22 4.4 91.2

R2 175.7 84 71 10 3.1 92.8

R3 173.6 88 76 3 3.0 93.2

R4 191.1 88 80 2 2.8 94.0

R5 195.2 88 86 1 2.7 94.8

R6 163.2 84 78 1 2.4 94.8

A1 198.3 88 81 6 2.4 95.6

A2 209.6 88 87 5 2.2 96.0

A3 214.8 88 87 4 2.1 96.0

A4 231.3 92 93 3 1.8 96.8

B1 214.0 88 87 2 2.1 95.6

B2 261.6 92 96 1 1.6 97.6

B3 349.1 96 99 0 0.9 98.8

Strategies derived from resilience driven methodology

Strategy 

ID

CP

Of similar PV of total 

cost to CP strategy

1 1

Strategy information

Of matching resilience 

(R) to CP strategy

95.6

Highest relibaility 

maintained over 90% 

of scenarios (%)

Total cost ‐ 

PV (£M)

Avg. 

resilience 

(months)

Avg. 

reliability 

(%)

90

Scenarios 

maintained at 

reliability of ≥92% 
(%)

Resilience maintained over varying % target levels of 

robustness (months)

Strategy derived by 

Current Practice (CP)
199.0 92 2.422 10 3 2



Comparing the CP optimal strategy with the R1-R6 strategies in Table 3 shows that, for a 425 

lower PV of total cost, solutions are generated with the same resilience as the CP strategy for the 426 

varying target levels of robustness. For example, strategy R3 has the matching resilience of 3 427 

months over 80% of future scenarios whilst costing approximately £25M less than the CP 428 

strategy. The trade-off is a slight decrease in reliability of water supply, with strategy R3 429 

maintaining a reliability of 88% over 90% of future supply/demand scenarios as opposed to 92% 430 

in the case of the CP strategy. Strategy A1, the solution of most similar total cost to the CP 431 

solution produced a more resilient system, with 90% of future scenarios now maintaining a 432 

resilience of 6 months, in contrast to the 10 months exhibited by the CP solution. The trade-off 433 

again is a moderate reduction in reliability, with a reliability of 92% being maintained over 81% 434 

of future scenarios, which falls to 88% over the remaining 9% of future scenarios within the 435 

90% target robustness region. This demonstrates that the resilience driven methodology has 436 

identified an adaptation strategy that provides a much more resilient, but marginally less reliable 437 

system. Strategy solutions A2, A3 and B1 can further increase the resilience of the system for 438 

around 5% increase in overall total costs. Strategy solutions A4, B2 and B3 increase both the 439 

resilience and reliability of the system but for increased overall costs. These trade-offs can only 440 

be identified from the resilience-based methodology as opposed to current practice, whereby 441 

singular optimal solutions to fewer objectives are derived. If the priority design criterion for a 442 

water supply system is to maintain high reliability then this could be set as a constraint and still 443 

maintained at a high robustness. However, the benefit of the resilience-based methodology is it 444 

allows a more resilient system to then be identified in addition to high reliability, albeit at a 445 

potentially increased PV of total cost. 446 

Fig. 6 lists the individual intervention components for each analysed strategy and their 447 

time of implementation within the 25-year planning horizon (codes for individual intervention 448 

options located in Table 2). It shows that the CP reliability driven strategy solution includes a 449 

greater number of low cost intervention options early in the planning horizon (2015) with the 450 



costliest intervention option (R18 – a new reservoir at Chew stoke) not implemented until 2021. 451 

This strategy also includes no interventions later in the planning horizon (2029-2039), implying 452 

that a number of interventions selected early on in the horizon greatly improves system 453 

reliability. Opposite of this, the alternative strategies derived by the resilience driven 454 

methodology recommend a high cost intervention early in the planning horizon (either R4 – a 455 

reservoir at Cheddar, R18 or, for the most resilient strategy (B3), R3 – a small desalination 456 

plant), before distributing a number of lower cost interventions over the remaining planning 457 

horizon, right up to 2039. This suggests larger investment early in the planning horizon as well 458 

as regular smaller water resource additions to the system increases overall system resilience, as 459 

the duration as well as frequency of severe drought periods are projected to increase over time 460 

due to climate change. 461 

[Insert Fig.6 here] 462 

Fig. 7 demonstrates the system capacity increases (water supply capacity added to the 463 

system) provided by the CP strategy and two similarly priced strategies A1 and B1, over the 25-464 

year planning horizon. It highlights how the outputs from the ‘levels of service’ method and the 465 

resilience driven method differ considerably in the size and timing of intervention options 466 

recommended. 467 

[Insert Fig.7 here] 468 

5      Discussion 469 

The results obtained here demonstrate how simplifying a planning approach to optimize to a 470 

single criterion (i.e., reliability of supply) does not provide solutions that perform optimally 471 

across alternative criteria. The methodology proposed here produced a wide range of Pareto 472 

optimal strategies to the performance indicators of resilience, robustness and cost and allows a 473 

decision maker to select a strategy based on their final preferred trade-off across these criteria.        474 



The variation in strategy solutions derived in this study highlights that resilience and 475 

reliability lead to differently designed systems and therefore by considering both performance 476 

indicators it may be possible to derive a solution that performs well across both metrics (see Fig. 477 

7). Assessing resilience also increases the capability to attach economic value to the cost of 478 

water restriction periods, as a duration of deficit is more easily quantifiable than a frequency-479 

based approach. Water planners and policy makers can more easily attach specific social, 480 

environmental and economic costs/risks, to a known duration of time rather than to a more 481 

abstract frequency of unknown events. 482 

The detailed analysis into the sequencing of intervention options over the planning horizon 483 

and the direct effect the sequencing has on the resilience/reliability of the water system was only 484 

possible due to the utilization of the dynamic model developed in this study to simulate the 485 

monthly supply-demand balance. This highlights the additional information provided by a 486 

simulation-based approach to water resources adaptation assessments and adds further research 487 

fuel to the growing international support to move to more simulation-based assessments when 488 

dealing with deep uncertainties in water resources management. 489 

 490 

6      Conclusions 491 

This paper has presented a comparative assessment of a new resilience-based methodology for 492 

WRM planning that optimizes for resilience and cost for a given target level of robustness, with 493 

that of a more conventional engineering approach used in the UK. The results obtained in the 494 

Bristol Water case study demonstrate that the new resilience-based approach for WRM planning 495 

improves on current key UK industry planning issues by: (a) increasing the transparency of 496 

adaptation strategy assessment processes and (b) improving the output information available to 497 

decision makers. The resilience-based methodology generated a 3D surface of Pareto-optimal 498 

strategies providing decision makers with a more complete trade-off picture of what different 499 



planning strategies can achieve in terms of system performance benefits and related costs thus 500 

enabling them to make better informed decisions. 501 

In addition to above observations, a comparison of the new methodology with the current 502 

UK planning practice on the same case study resulted in further observations as follows: 503 

1. Trade-off exists between the measured resilience and reliability of the system, with 504 

optimisation to the one metric not necessarily optimising the system to the other.  505 

2. Analysing the time sequencing of interventions in the optimal strategies suggests that, at 506 

least in the case study analysed here, more low cost interventions early in the planning 507 

horizon achieve higher system reliability whereas regular intervention options spread 508 

over the planning horizon achieve higher system resilience when planning to an 509 

uncertain future. 510 

3. Optimizing for a single objective in the current practice methodology yields only a single 511 

solution that is highly dependent on the initial target robustness (defined by headroom) 512 

and target reliability selected and does not provide alternative solutions that may achieve 513 

benefits for small trade-offs. 514 
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Figure Captions 617 

Fig. 1. Simplified flowchart of the dynamic water resources simulation model with resilience-based 618 

methodology set-up. 619 

Fig. 2. Bristol Water resource zone schematic. 620 

Fig. 3. Resilience exhibited by the ‘current practice’ (CP) optimal solution at varying target levels of 621 

robustness. 622 

Fig. 4. Pareto adaptation strategies identified for: (a) resilience vs cost for varying target levels of 623 

robustness (b) robustness vs cost for varying levels of resilience and (c) resilience vs robustness for 624 

varying strategy cost groups. 625 

Fig. 5. A 3D-surface of Pareto adaptation strategies identified over performance indicators of resilience 626 

(0-24 months), robustness (50-100 %) and PV of total cost (0-600 £M); for discrete target levels of 627 

robustness of 50, 60, 70, 80, 90 and 100%. Including individual strategies selected for further analysis 628 

(R1-R6, A1-A4, and B1-B3). 629 

Fig. 6. Table of intervention option components and their year of implementation for selected strategies 630 

(option codes listed in Table 2). 631 



Fig. 7. System capacity increases for the ‘current practice’ (CP) strategy and resilience driven strategies 632 

A1 and B1. 633 


