861 research outputs found
Frequency shifting of pulsed narrow-band laser light in a multipass Raman cell
A multipass cell is described which allows efficient stimulated Raman frequency shifting for low pump laser intensities and low gas pressures. The latter is important for Raman shifting of narrow-band Fourier-transform limited light pulses (Δv=75 MHz). It is shown that frequency broadening of the Raman shifted light can be largely avoided in the Dicke narrowing regime at low pressures. For 75 MHz pump pulses and an H2 density of 2.5 amagat we found a negligible broadening to 90 MHz of the stimulated Stokes light. This is far below the value of 250 MHz expected from spontaneous emission. The narrow-band Stokes pulses achieved in CO2 enabled us to measure the pressure shift coefficient (-0.71×10-2 cm-1/amagat) of this gas. It is demonstrated, for the example of benzene, that our technique provides a very practical light source for high resolution molecular spectroscopy
A lattice Boltzmann study of non-hydrodynamic effects in shell models of turbulence
A lattice Boltzmann scheme simulating the dynamics of shell models of
turbulence is developed. The influence of high order kinetic modes (ghosts) on
the dissipative properties of turbulence dynamics is studied. It is
analytically found that when ghost fields relax on the same time scale as the
hydrodynamic ones, their major effect is a net enhancement of the fluid
viscosity. The bare fluid viscosity is recovered by letting ghost fields evolve
on a much longer time scale. Analytical results are borne out by
high-resolution numerical simulations. These simulations indicate that the
hydrodynamic manifold is very robust towards large fluctuations of non
hydrodynamic fields.Comment: 17 pages, 3 figures, submitted to Physica
Towards higher order lattice Boltzmann schemes
In this contribution we extend the Taylor expansion method proposed
previously by one of us and establish equivalent partial differential equations
of DDH lattice Boltzmann scheme at an arbitrary order of accuracy. We derive
formally the associated dynamical equations for classical thermal and linear
fluid models in one to three space dimensions. We use this approach to adjust
relaxation parameters in order to enforce fourth order accuracy for thermal
model and diffusive relaxation modes of the Stokes problem. We apply the
resulting scheme for numerical computation of associated eigenmodes and compare
our results with analytical references
Dissection of the transcriptional regulation of grape ASR and response to glucose and abscisic acid
Despite the fact that the precise physiological function of ASRs [abscisic acid (ABA), stress, ripening] remains unknown, they have been suggested to play a dual role in the plant response to environmental cues, as highly hydrophilic proteins for direct protection, as well as transcription factors involved in the regulation of gene expression. To investigate further the biological positioning of grape ASR in the hormonal and metabolic signal network, three promoters corresponding to its cDNA were isolated and submited to a detailed in silico and functional analysis. The results obtained provided evidence for the allelic polymorphism of the grape ASR gene, the organ-preferential expression conferred on the GUS reporter gene, and the specific phloem tissue localization revealed by in situ hybridization. The study of glucose and ABA signalling in its transcriptional control, by transfection of grape protoplasts using the dual luciferase system, revealed the complexity of ASR gene expression regulation. A model was proposed allowing a discussion of the place of ASR in the fine tuning of hormonal and metabolic signalling involved in the integration of environmental cues by the plant organism
On the Three-dimensional Central Moment Lattice Boltzmann Method
A three-dimensional (3D) lattice Boltzmann method based on central moments is
derived. Two main elements are the local attractors in the collision term and
the source terms representing the effect of external and/or self-consistent
internal forces. For suitable choices of the orthogonal moment basis for the
three-dimensional, twenty seven velocity (D3Q27), and, its subset, fifteen
velocity (D3Q15) lattice models, attractors are expressed in terms of
factorization of lower order moments as suggested in an earlier work; the
corresponding source terms are specified to correctly influence lower order
hydrodynamic fields, while avoiding aliasing effects for higher order moments.
These are achieved by successively matching the corresponding continuous and
discrete central moments at various orders, with the final expressions written
in terms of raw moments via a transformation based on the binomial theorem.
Furthermore, to alleviate the discrete effects with the source terms, they are
treated to be temporally semi-implicit and second-order, with the implicitness
subsequently removed by means of a transformation. As a result, the approach is
frame-invariant by construction and its emergent dynamics describing fully 3D
fluid motion in the presence of force fields is Galilean invariant. Numerical
experiments for a set of benchmark problems demonstrate its accuracy.Comment: 55 pages, 8 figure
Prehistory of Transit Searches
Nowadays the more powerful method to detect extrasolar planets is the transit
method. We review the planet transits which were anticipated, searched, and the
first ones which were observed all through history. Indeed transits of planets
in front of their star were first investigated and studied in the solar system.
The first observations of sunspots were sometimes mistaken for transits of
unknown planets. The first scientific observation and study of a transit in the
solar system was the observation of Mercury transit by Pierre Gassendi in 1631.
Because observations of Venus transits could give a way to determine the
distance Sun-Earth, transits of Venus were overwhelmingly observed. Some
objects which actually do not exist were searched by their hypothetical
transits on the Sun, as some examples a Venus satellite and an infra-mercurial
planet. We evoke the possibly first use of the hypothesis of an exoplanet
transit to explain some periodic variations of the luminosity of a star, namely
the star Algol, during the eighteen century. Then we review the predictions of
detection of exoplanets by their transits, those predictions being sometimes
ancient, and made by astronomers as well as popular science writers. However,
these very interesting predictions were never published in peer-reviewed
journals specialized in astronomical discoveries and results. A possible
transit of the planet beta Pic b was observed in 1981. Shall we see another
transit expected for the same planet during 2018? Today, some studies of
transits which are connected to hypothetical extraterrestrial civilisations are
published in astronomical refereed journals. Some studies which would be
classified not long ago as science fiction are now considered as scientific
ones.Comment: Submiited to Handbook of Exoplanets (Springer
Cytoplasmic PML promotes TGF-β-associated epithelial–mesenchymal transition and invasion in prostate cancer
Epithelial–mesenchymal transition (EMT) is a key event that is involved in the invasion and dissemination of cancer cells. Although typically considered as having tumour-suppressive properties, transforming growth factor (TGF)-β signalling is altered during cancer and has been associated with the invasion of cancer cells and metastasis. In this study, we report a previously unknown role for the cytoplasmic promyelocytic leukaemia (cPML) tumour suppressor in TGF-β signalling-induced regulation of prostate cancer-associated EMT and invasion. We demonstrate that cPML promotes a mesenchymal phenotype and increases the invasiveness of prostate cancer cells. This event is associated with activation of TGF-β canonical signalling pathway through the induction of Sma and Mad related family 2 and 3 (SMAD2 and SMAD3) phosphorylation. Furthermore, the cytoplasmic localization of promyelocytic leukaemia (PML) is mediated by its nuclear export in a chromosomal maintenance 1 (CRM1)-dependent manner. This was clinically tested in prostate cancer tissue and shown that cytoplasmic PML and CRM1 co-expression correlates with reduced disease-specific survival. In summary, we provide evidence of dysfunctional TGF-β signalling occurring at an early stage in prostate cancer. We show that this disease pathway is mediated by cPML and CRM1 and results in a more aggressive cancer cell phenotype. We propose that the targeting of this pathway could be therapeutically exploited for clinical benefit
Zero temperature phases of the frustrated J1-J2 antiferromagnetic spin-1/2 Heisenberg model on a simple cubic lattice
At zero temperature magnetic phases of the quantum spin-1/2 Heisenberg
antiferromagnet on a simple cubic lattice with competing first and second
neighbor exchanges (J1 and J2) is investigated using the non-linear spin wave
theory. We find existence of two phases: a two sublattice Neel phase for small
J2 (AF), and a collinear antiferromagnetic phase at large J2 (CAF). We obtain
the sublattice magnetizations and ground state energies for the two phases and
find that there exists a first order phase transition from the AF-phase to the
CAF-phase at the critical transition point, pc = 0.28. Our results for the
value of pc are in excellent agreement with results from Monte-Carlo
simulations and variational spin wave theory. We also show that the quartic 1/S
corrections due spin-wave interactions enhance the sublattice magnetization in
both the phases which causes the intermediate paramagnetic phase predicted from
linear spin wave theory to disappear.Comment: 19 pages, 4 figures, Fig. 1b modified, Appendix B text modifie
Variational Principles for Stellar Structure
The four equations of stellar structure are reformulated as two alternate
pairs of variational principles. Different thermodynamic representations lead
to the same hydromechanical equations, but the thermal equations require, not
the entropy, but the temperature as the thermal field variable. Our treatment
emphasizes the hydrostatic energy and the entropy production rate of luminosity
produced and transported. The conceptual and calculational advantages of
integral over differential formulations of stellar structure are discussed
along with the difficulties in describing stellar chemical evolution by
variational principles.Comment: 28 pages, LaTeX, requires AASTeX, 1 PostScript figure, revisions:
erratum; accepted by Astrophysical Journa
Dynamics of fluctuations in a fluid below the onset of Rayleigh-B\'enard convection
We present experimental data and their theoretical interpretation for the
decay rates of temperature fluctuations in a thin layer of a fluid heated from
below and confined between parallel horizontal plates. The measurements were
made with the mean temperature of the layer corresponding to the critical
isochore of sulfur hexafluoride above but near the critical point where
fluctuations are exceptionally strong. They cover a wide range of temperature
gradients below the onset of Rayleigh-B\'enard convection, and span wave
numbers on both sides of the critical value for this onset. The decay rates
were determined from experimental shadowgraph images of the fluctuations at
several camera exposure times. We present a theoretical expression for an
exposure-time-dependent structure factor which is needed for the data analysis.
As the onset of convection is approached, the data reveal the critical
slowing-down associated with the bifurcation. Theoretical predictions for the
decay rates as a function of the wave number and temperature gradient are
presented and compared with the experimental data. Quantitative agreement is
obtained if allowance is made for some uncertainty in the small spacing between
the plates, and when an empirical estimate is employed for the influence of
symmetric deviations from the Oberbeck-Boussinesq approximation which are to be
expected in a fluid with its density at the mean temperature located on the
critical isochore.Comment: 13 pages, 10 figures, 52 reference
- …