38 research outputs found

    Irregular graph pyramids and representative cocycles of cohomology generators

    Get PDF
    Structural pattern recognition describes and classifies data based on the relationships of features and parts. Topological invariants, like the Euler number, characterize the structure of objects of any dimension. Cohomology can provide more refined algebraic invariants to a topological space than does homology. It assigns ‘quantities’ to the chains used in homology to characterize holes of any dimension. Graph pyramids can be used to describe subdivisions of the same object at multiple levels of detail. This paper presents cohomology in the context of structural pattern recognition and introduces an algorithm to efficiently compute representative cocycles (the basic elements of cohomology) in 2D using a graph pyramid. Extension to nD and application in the context of pattern recognition are discussed

    On morphological hierarchical representations for image processing and spatial data clustering

    Full text link
    Hierarchical data representations in the context of classi cation and data clustering were put forward during the fties. Recently, hierarchical image representations have gained renewed interest for segmentation purposes. In this paper, we briefly survey fundamental results on hierarchical clustering and then detail recent paradigms developed for the hierarchical representation of images in the framework of mathematical morphology: constrained connectivity and ultrametric watersheds. Constrained connectivity can be viewed as a way to constrain an initial hierarchy in such a way that a set of desired constraints are satis ed. The framework of ultrametric watersheds provides a generic scheme for computing any hierarchical connected clustering, in particular when such a hierarchy is constrained. The suitability of this framework for solving practical problems is illustrated with applications in remote sensing

    Hierarchical matching of panoramic images

    No full text

    On the Space Between Critical Points

    No full text
    The vertices of the neighborhood graph of a digital picture P can be interpolated to form a 2-manifold M with critical points (maxima, minima, saddles), slopes and plateaus being the ones recognized by local binary patterns (LBPs). Neighborhood graph produces a cell decomposition of M: each 0-cell is a vertex in the neighborhood graph, each 1-cell is an edge in the neighborhood graph and, if P is well-composed, each 2-cell is a slope region in M in the sense that every pair of s in the region can be connected by a monotonically increasing or decreasing path. In our previous research, we produced superpixel hierarchies (combinatorial graph pyramids) that are multiresolution segmentations of the given picture. Critical points of P are preserved along the pyramid. Each level of the pyramid produces a slope complex which is a cell decomposition of M preserving critical points of P and such that each 2-cell is a slope region. Slope complexes in different levels of the pyramid are always homeomorphic. Our aim in this research is to explore the configuration at the top level of the pyramid which consists of a slope complex with vertices being only the critical points of P. We also study the number of slope regions on the top
    corecore